INTERNAL LIFSHITS TAILS FOR RANDOM PERTURBATIONS OF PERIODIC SCHRÖDINGER OPERATORS

FRÉDÉRIC KLOPP

CONTENTS

0.	Introduction	. 335
1.	Some preliminary considerations on periodic Schrödinger operators	. 340
	1.1. The Floquet decomposition	. 340
	1.2. Wannier basis	. 341
	1.3. The density of states	. 342
2.	Lifshits tails behavior for random Schrödinger operators	. 343
	2.1. The main theorem	. 343
	2.2. Some applications	
3.	The proof of Proposition 1.1	
4.	A reduction procedure	
	4.1. The reference operators	. 353
	4.2. The reduction to a discrete problem	
5.	The proof of Theorem 4.1	
	5.1. The periodic approximation	
	5.2. Cutoff in energy for the periodic approximations	
6.	The lower bound	
	The upper bound	. 378
	7.1. Case (2) of assumption (H.2bis)	
	7.2. Case (1) of assumption (H.2bis)	
	A DDENIDIY	301

0. Introduction. This paper is devoted to the study of Lifshits tails for random perturbations of periodic Schrödinger operators. We prove that, at the edge of a gap, a true Lifshits tail for the random operator occurs if and only if the density of states of the background periodic operator has a nondegenerate behavior.

To be more precise, let us state our main result in a restricted setting. Consider W a bounded, \mathbb{Z}^d -periodic, real-valued potential on \mathbb{R}^d and define $H = -\Delta + W$ to be a periodic Schrödinger operator acting on $L^2(\mathbb{R}^d)$. It is selfadjoint with domain $H^2(\mathbb{R}^d)$. Let $\sigma = \sigma(H)$ be the spectrum of H, and assume that σ has a gap below

Received 27 January 1997. Revision received 22 January 1998.

1991 Mathematics Subject Classification. Primary 82B44; Secondary 47B80, 60H25.

Author supported by the European Training and Mobility of Researchers network grant number ERBFMRXCT960001.