p-ADIC PERIODS, *p*-ADIC *L*-FUNCTIONS, AND THE *p*-ADIC UNIFORMIZATION OF SHIMURA CURVES

MASSIMO BERTOLINI AND HENRI DARMON

CONTENTS

1.	Introduction	305
2.	Definite quaternion algebras and graphs	308
3.	The <i>p</i> -adic <i>L</i> -function	312
4.	The theory of <i>p</i> -adic uniformization of Shimura curves	318
5.	<i>p</i> -adic Shintani cycles and special values of complex <i>L</i> -functions	320
6.	<i>p</i> -adic Shintani cycles and derivatives of <i>p</i> -adic <i>L</i> -functions	323
7.	Proof of Theorem 6.1	325

1. Introduction. Let E/\mathbb{Q} be a modular elliptic curve of conductor N, and let p be a prime of split multiplicative reduction for E. Write \mathbb{C}_p for a fixed completion of an algebraic closure of \mathbb{Q}_p . Tate's theory of p-adic uniformization of elliptic curves yields a rigid-analytic, $\operatorname{Gal}(\mathbb{C}_p/\mathbb{Q}_p)$ -equivariant uniformization of the \mathbb{C}_p -points of E:

(1)
$$0 \to q^{\mathbb{Z}} \to \mathbb{C}_p^{\times} \xrightarrow{\Phi_{\text{Tate}}} E(\mathbb{C}_p) \to 0,$$

where $q \in p\mathbb{Z}_p$ is the *p*-adic period of *E*.

Mazur, Tate, and Teitelbaum conjectured in [MTT] that the cyclotomic *p*-adic *L*-function of E/\mathbb{Q} vanishes at the central point to order one greater than that of its classical counterpart. Furthermore, they proposed a formula for the leading coefficient of such a *p*-adic *L*-function. In the special case where the analytic rank of $E(\mathbb{Q})$ is zero, they predicted that the ratio of the special value of the first derivative of the cyclotomic *p*-adic *L*-function and the algebraic part of the special value of the complex *L*-function of E/\mathbb{Q} is equal to the quantity

$$\frac{\log_p(q)}{\operatorname{ord}_p(q)}$$

Received 9 June 1997. Revision received 20 February 1998.

1991 Mathematics Subject Classification. Primary 11G05, 11G18; Secondary 11G40.

Bertolini partially supported by Gruppo Nazionale per le Strutture Algebriche e Geometriche e loro Applicazioni (Consiglio Nazionale delle Ricerche); Ministero dell' Università e della Ricerca Scientifica e Tecnologica, progetto nazionale "Geometria algebrica"; and by Human Capital and Mobility Programme of the European Community, under contract ERBCH RXCT940557.

Darmon partially supported by grants from Fonds pour la Formation de Chercheurs et l'Aide à la Recherche and the Natural Sciences and Engineering Research Council, and by an Alfred P. Sloan research award.