THE RANK OF QUOTIENTS OF $J_0(N)$

JEFFREY M. VANDERKAM

CONTENTS

Introduction	545
The first moment	548
An exact second moment	555
An upper bound on second moments	562
Proofs of the theorems	569
The key lemma	571
	The first moment

1. Introduction. Given a large prime *N*, consider the Jacobian variety $J_0(N)$ of the modular curve $X_0(N) = \mathbf{H} / \Gamma_0(N)$. There has been considerable study recently of the rank over **Q** of these varieties and their quotients, much of it dealing with two questions:

- Are there large quotients of $J_0(N)$ with rank zero over the rationals?
- How large a rank can a quotient of $J_0(N)$ have?

See Mazur [9] and Merel [10] for arithmetic approaches to the first question; one consequence of the latter is the existence of a quotient with rank zero and dimension at least $N^{1/8}$ (out of a maximum possible dimension of $D_N = N/12 + O(1)$, since N is prime). The progress of Kolyvagin [8] and Gross and Zagier [6] toward the Birch-Swinnerton-Dyer conjecture allows one to investigate these questions through the "analytic rank" of $J_0(N)$. This is defined (see, for example, [1]) to be the order of the zero at s = 1 of $L(J_0/\mathbf{Q}, s) = \prod_f L_f(s)$, where the product is taken over L-functions associated with the Hecke eigenbasis of $S_2(\Gamma_0(N))$, the weight-2 holomorphic forms on $X_0(N)$ (of which there are D_N). In particular, if one can show that many of the $L_f(s)$'s have order zero or one, then the corresponding quotients provide good answers to each of the questions. Along these lines, Duke [4] has used first and second moments of L-functions to show that at least $N/(\log N)^2$ are nonzero at s = 1, which along with Kolyvagin's results may be used to give a corresponding improvement in the answer to the first question.

One can also use Riemann's explicit formula for the L_f 's (see Mestre [11]) to control the average order at s = 1, although this approach requires (at least at present) an appeal to the Riemann hypothesis to obtain the desired bounds. In recent papers, Brumer [1] and Murty [12] have used these techniques to show that (assuming the

Received 3 December 1997. Revision received 5 February 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11G40; Secondary 11F67, 11F72.

The author was supported by the Hertz Foundation.