CHARACTERISTIC CYCLES FOR THE LOOP GRASSMANNIAN AND NILPOTENT ORBITS

SAM EVENS AND IVAN MIRKOVIĆ

0. Introduction. Let \mathcal{F} be a perverse sheaf on a complex manifold X, constructible with respect to a Whitney stratification \mathcal{F} . A basic problem in microlocal geometry is to compute the characteristic cycle

$$CC(\mathcal{F}) = \sum_{\alpha \in \mathcal{F}} c_{\alpha}(\mathcal{F}) \cdot \overline{T_{\alpha}^{*}(X)},$$

which is a linear combination of closures of conormal bundles to submanifolds of X. Intuitively, the microlocal multiplicities $c_{\alpha}(\mathcal{F})$ measure the singularity of \mathcal{F} at α . In settings related to representation theory, a group G acts on X, \mathcal{F} is G-equivariant, and the microlocal multiplicities play a significant but only partially understood role in representation theory (see [Ro], [SV], [ABV], and [KaSa], e.g.).

In this paper, we compute microlocal multiplicities for certain cases of interest in representation theory. Let G be a connected reductive group with loop group LG, and let P be the subgroup of LG consisting of loops with positive Fourier coefficients. Then P-orbits \mathcal{G}_{λ} on the loop Grassmannian $LG/P = \mathcal{G}$ correspond to the irreducible representations $L(\lambda)$ of the dual reductive group \check{G} . For dominant weights μ and λ of a torus of \check{G} , let $m_{\mu}(L(\lambda))$ denote the multiplicity of μ in $L(\lambda)$. Let us embed the orbit closure $\overline{\mathcal{G}_{\lambda}}$ into a finite-dimensional manifold Z.

THEOREM 0.1. (a) Let $i: \mathcal{G}_{\lambda} \to Z$ be the inclusion, and let $i_!(\mathbb{C}_{\lambda})$ be the extension by zero of the constant sheaf on \mathbb{O}_{λ} . Then $CC(i_!(\mathbb{C}_{\lambda})[\dim \mathcal{G}_{\lambda}]) = \overline{T_{\mathcal{G}_{\lambda}}^* Z}$.

(b) The characteristic cycle of the intersection cohomology sheaf of $\overline{\mathfrak{G}_{\lambda}}$ is given by the character of $L(\lambda)$,

$$CC(IC_{\lambda}) = \sum_{\mathcal{G}_{\mu} \subseteq \overline{\mathcal{G}_{\lambda}}} m_{\mu} (L(\lambda)) \cdot \overline{T_{\mathcal{G}_{\mu}}^* Z}.$$

We also consider the nilpotent cone in a semisimple Lie algebra.

THEOREM 0.2. Let $\mathfrak{g} = \mathfrak{sl}(n)$, and let α and β be distinct nilpotent orbits and $i : \alpha \hookrightarrow \mathfrak{g}$. Then the following are true.

Received 12 February 1997.

1991 Mathematics Subject Classification. Primary 20G05; Secondary 22E67, 32C38.

Evens partially supported by a National Science Foundation postdoctoral fellowship and by a National Science Foundation grant.

Mirković partially supported by a National Science Foundation grant.