COUNTING RATIONAL CURVES ON K3 SURFACES

ARNAUD BEAUVILLE

Introduction. The aim of this paper is to explain the remarkable formula found by Yau and Zaslow [YZ] to express the number of rational curves on a K3 surface. Projective K3 surfaces fall into countably many families $\left(\mathscr{F}_{g}\right)_{g \geq 1}$; a surface in \mathscr{F}_{g} admits a g-dimensional linear system of curves of genus g. A naïve count of constants suggests that such a system will contain a positive number, say, $n(g)$, of rational (highly singular) curves. The formula is

$$
\sum_{g \geq 0} n(g) q^{g}=\frac{q}{\Delta(q)},
$$

where $\Delta(q)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}$ is the well-known modular form of weight 12 , and by convention we put $n(0)=1$.

To explain the idea in a nutshell, take the case $g=1$. We thus look at K3 surfaces with an elliptic fibration $f: S \rightarrow \mathbf{P}^{1}$, and we ask for the number of singular fibres. The (topological) Euler-Poincaré characteristic of a fibre C_{t} is zero if C_{t} is smooth, is 1 if it is a rational curve with one node, is 2 if it has a cusp, and so on. From the standard properties of the Euler-Poincaré characteristic, we get $e(S)=\sum_{t} e\left(C_{t}\right)$; hence, $n(1)=$ $e(S)=24$, and this number counts nodal rational curves with multiplicity 1 , cuspidal rational curves with multiplicity 2 , and so on.

The idea of Yau and Zaslow is to generalize this approach to any genus. Let S be a K3 surface with a g-dimensional linear system Π of curves of genus g. The role of f is played by the morphism $\overline{\mathscr{y}} \mathscr{C} \rightarrow \Pi$, whose fibre over a point $t \in \Pi$ is the compactified Jacobian $\bar{J} C_{t}$. To apply the same method, we would like to prove the following facts.
(1) The Euler-Poincaré characteristic $e(\overline{\mathscr{q}} \mathscr{C})$ is the coefficient of q^{g} in the Taylor expansion of $q / \Delta(q)$.
(2) $e\left(\bar{J} C_{t}\right)=0$ if C_{t} is not rational.
(3) $e\left(\bar{J} C_{t}\right)=1$ if C_{t} is a rational curve with nodes as only singularities. Moreover $e\left(\bar{J} C_{t}\right)$ is positive when C_{t} is rational, and can be computed in terms of the singularities of C_{t}.
(4) For a generic K3 surface S in \mathscr{F}_{g}, all rational curves in Π are nodal.

The first statement is proved in Section 1, by comparing $e(\overline{\mathscr{y}} \mathscr{C})$ with the EulerPoincaré characteristic of the Hilbert scheme $S^{[g]}$, which has been computed by

