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Introduction. Let be an adequate equivalence relation on algebraic cycles,
for example, rational equivalence (rat), homological equivalence with respect to
some Weil cohomology theory (horn), or numerical equivalence (num). For a
smooth projective variety X, s(x) denotes the group of algebraic cycles on X
of codimension s, and

(x) (R)

Then ~(X) d___f (s (s (X) becomes a graded ll-algebra under the intersection
product, and we define 9~ (X) to be the -subalgebra of ~ (X), generated by
the divisor classes

(x) (x)].

The elements of 9~ (X) are called the Lefschetz classes on X (for the relation -).
They are the algebraic classes on X that can be expressed as linear combinations
of intersections of divisor classes (including the empty intersection X).
Our main theorem states that, for any Weil cohomology theory X H*(X)

and any abelian variety A over an algebraically closed field, there is a reductive
algebraic group L(A) (not necessarily connected) such that the cycle class map
induces an isomorphism

!om(Ar) @ k H2S(Ar)(s) L(A)

for all integers r,s >/0; moreover, num(A om(Ar). Here A A x x A
(r copies), k is the coefficient field for the cohomology theory, and s denotes a
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