FINITE ENERGY SURFACES AND THE CHORD PROBLEM

C. ABBAS

CONTENTS

241
249
263
263
266
291

1. Introduction. A contact form on an odd-dimensional manifold M of dimension 2n + 1 is a 1-form λ such that the (2n + 1)-form Ω , given by

$$\Omega = \lambda \wedge (d\lambda)^n,$$

defines a volume form on M. We observe that any manifold admitting a contact form is necessarily orientable and that a contact form defines a natural orientation.

Assume now that (M, λ) is a manifold together with a given contact form. First of all, we note that λ defines a 2n-dimensional vector bundle over M. Indeed, consider $\xi \to M$, where ξ is given by

$$\xi_m = \ker(\lambda_m).$$

The linear functional $\lambda_m : T_m M \to \mathbf{R}$ is nonzero since $\lambda \wedge (d\lambda)^n$ defines a volume form. Hence we obtain a vector bundle. Moreover, by the properties of λ , we see that $\omega := d\lambda | (\xi \oplus \xi)$ is nondegenerate on each fibre. Clearly, $\omega : \xi_m \oplus \xi_m \to \mathbf{R}$ is also skew-symmetric and bilinear; hence it is a symplectic form on ξ_m . Therefore, (ξ, ω) is a symplectic vector bundle.

Since the dimension of M is odd, $d\lambda$ is degenerate on each fibre $T_m M$ of the tangent bundle TM. But it is as good as it can be, since λ is a contact form. Therefore, we obtain a line bundle ℓ over M via the definition

$$\ell_m = \{ p \in T_m M \, | \, d\lambda_m(p,q) = 0 \text{ for all } q \in \xi_m \}.$$

Received 11 July 1997.

1991 Mathematics Subject Classification. Primary 35B40, 35B45, 35J60; Secondary 34C35, 58F05, 58C10.