AN ADAMS-RIEMANN-ROCH THEOREM IN ARAKELOV GEOMETRY

DAMIAN ROESSLER

Contents

1.	Introduction	. 61
2.	The λ -structure of arithmetic K_0 -theory	. 64
	The statement	
	The γ -filtration of arithmetic K_0 -theory	
5.	Analytical preliminaries	. 72
	5.1. The higher analytic torsion	. 72
	5.2. The singular Bott-Chern current	
	5.3. Bismut's theorem	. 79
6.	An Adams-Riemann-Roch formula for closed immersions	. 81
	6.1. Geometric preliminaries	. 81
	6.1.1. The deformation to the normal cone	81
	6.1.2. Deformation of resolutions	. 82
	6.2. Proof of the Adams-Riemann-Roch theorem for closed	
	immersions	83
	6.2.1. The case $k = 1$	
	6.2.2. A model for closed embeddings	. 86
	6.2.3. The deformation theorem	. 90
	6.2.4. The general case	
7.	The arithmetic Adams-Riemann-Roch theorem for local complete	
	intersection p.f.s.r. morphisms	101
8.	The arithmetic Grothendieck-Riemann-Roch theorem for local	
	complete intersection p.f.s.r. morphisms	121

1. Introduction. In this paper, we investigate relative Riemann-Roch formulas for the λ -operations acting on Grothendieck groups "compactified" in the sense of Arakelov geometry. Let Y be a quasi-projective scheme over Z that is smooth over Q. We call such a scheme an arithmetic variety. Following [20, II], one can associate to Y an arithmetic Grothendieck group $\hat{K}_0(Y)$, whose generators are differential forms and vector bundles on Y equipped with hermitian metrics on the manifold $Y(\mathbf{C})$ of complex points of Y. The group $\hat{K}_0(Y)$ is related to the Grothendieck group $K_0(Y)$ of vector bundles of Y via the

1991 Mathematics Subject Classification. 14G40, 14C40, 19E08.

Received 30 May 1996. Revision received 26 June 1997.