BLOCH INVARIANTS OF HYPERBOLIC 3-MANIFOLDS

WALTER D. NEUMANN and JUN YANG

1. Introduction. Let $M=\mathbb{H}^{3} / \Gamma$ be an oriented hyperbolic manifold of finite volume (so Γ is a torsion-free Kleinian group). It is known that M has a degreeone ideal triangulation by ideal simplices $\Delta_{1}, \ldots, \Delta_{n}$ (see Section 2.1). Let $z_{i} \in \mathbb{C}$ be the parameter of the ideal simplex Δ_{i} for each i. These parameters define an element $\beta(M)=\sum_{i=1}^{n}\left[z_{i}\right]$ in the pre-Bloch group $\mathscr{P}(\mathbb{C})$ (as defined in Theorem 1.1 and in [14], for example).

Theorem 1.1. The above element $\beta(M)$ can be defined without reference to the ideal decomposition, so that it depends only on M. Moreover, it lies in the Bloch group $\mathscr{B}(\mathbb{C}) \subset \mathscr{P}(\mathbb{C})$.

The independence of $\beta(M)$ on ideal triangulation holds even though our concept of degree-one ideal triangulation is rather more general than the usual ideal triangulation concepts.

We prove this theorem as follows. There is an exact sequence (mod 2-torsion) due to Bloch and Wigner (cf. [14])

$$
0 \rightarrow \mu \rightarrow H_{3}(\operatorname{PGL}(2, \mathbb{C}) ; \mathbb{Z}) \rightarrow \mathscr{B}(\mathbb{C}) \rightarrow 0
$$

where $\mu \subset \mathbb{C}^{*}$ is the group of roots of unity. If M is compact, then there is a "fundamental class" $[M] \in H_{3}(\operatorname{PGL}(2, \mathbb{C}) ; \mathbb{Z})$, and we show that $\beta(M)$ is the image of $[M]$ in $\mathscr{B}(\mathbb{C})$. We do this by factoring through a certain relative homology group $H_{3}\left(\operatorname{PGL}(2, \mathbb{C}), \mathbb{C} \mathbb{P}^{1} ; \mathbb{Z}\right)$ for which the relationship between $[M]$ and $\beta(M)$ is easier to see. (In fact, Dupont and Sah [14] show that this relative homology group maps isomorphically to $\mathscr{P}(\mathbb{C})$.) In the noncompact case we also find a fundamental class $[M]$ in this relative homology group that maps to $\beta(M) \in \mathscr{P}(\mathbb{C})$, thus proving that $\beta(M)$ is independent of triangulation. The fact that it lies in $\mathscr{B}(\mathbb{C})$ is the relation $\sum z_{i} \wedge\left(1-z_{i}\right)=0 \in \mathbb{C}^{*} \wedge \mathbb{C}^{*}$ on the simplex parameters z_{i}. For a more restrictive type of ideal triangulation than considered here, this relation has been attributed to Thurston (unpublished) by Gross [19] (according to [45]). It also follows easily from [32] (see also [27]). We give a cohomological proof here.

[^0]
[^0]: Received 12 December 1996. Revision received 16 June 1997.
 1991 Mathematics Subject Classification. Primary 57M99; Secondary 19E99, 19 F27.
 This research is supported by the Australian Research Council and the National Science Foundation.

