FLOWS ON HOMOGENEOUS SPACES AND DIOPHANTINE PROPERTIES OF MATRICES

DMITRY Y. KLEINBOCK

Introduction

Notation. We denote by $M_{m, n}(\mathbb{R})$ the space of real matrices with m rows and n columns. $I_{k} \in M_{k, k}(\mathbb{R})$ stands for the identity matrix. Vectors are named by lowercase boldface letters, such as $\mathbf{x}=\left(x_{i} \mid 1 \leqslant i \leqslant k\right)$, and, despite the row notation, are always treated as column vectors. Zero means a zero vector in any dimension, as well as a zero matrix of any size. For a matrix $L \in M_{m, n}(\mathbb{R})$ and $1 \leqslant i \leqslant m$, we denote by L_{i} the linear form $\mathbb{R}^{n} \rightarrow \mathbb{R}$ corresponding to the i th row of L, and by $L^{(i)}$ (resp., $\left.L_{(i)}\right)$ the matrix consisting of first (resp., last) i rows of L.

Any statement involving " \pm " stands for two statements, one for each choice of the sign. The Hausdorff dimension of a subset Y of a metric space X is denoted by $\operatorname{dim}(Y)$, and we say that Y is thick (in X) if, for any nonempty open subset W of $X, \operatorname{dim}(W \cap Y)=\operatorname{dim}(W)$ (i.e., Y has full Hausdorff dimension at any point of X).

In what follows, we fix two positive integers m and n, denote by G the $\operatorname{group}\left\{L \in G L_{m+n}(\mathbb{R}) \mid \operatorname{det}(L)= \pm 1\right\}$ and by $\Omega \cong S L_{m+n}(\mathbb{R}) / S L_{m+n}(\mathbb{Z}) \cong$ $G / G L_{m+n}(\mathbb{Z})$ the space of unimodular lattices in \mathbb{R}^{m+n}.

History. A system $\left(A_{1}, \ldots, A_{m}\right)$ of linear forms in n variables is called badly approximable if there exists a constant $c>0$ such that for every $\mathbf{p} \in \mathbb{Z}^{m}$ and $\mathbf{q} \in \mathbb{Z}^{n} \backslash\{0\}$

$$
\begin{equation*}
\max \left(\left|A_{1}(\mathbf{q})+p_{1}\right|^{m}, \ldots,\left|A_{m}(\mathbf{q})+p_{m}\right|^{m}\right) \cdot \max \left(\left|q_{1}\right|^{n}, \ldots,\left|q_{n}\right|^{n}\right)>c . \tag{1}
\end{equation*}
$$

W. Schmidt proved in 1969 [S3] that matrices $A \in M_{m, n}(\mathbb{R})$, such that the system $\left(A_{1}, \ldots, A_{m}\right)$ is badly approximable, form a thick subset of $M_{m, n}(\mathbb{R})$.

In 1986, S. G. Dani exhibited a correspondence between badly approximable systems of linear forms and certain bounded trajectories in Ω. His result [D1, Theorem 2.20] can be restated as follows: For $A \in M_{m, n}(\mathbb{R})$, consider the lattice $\Lambda=\left(\begin{array}{cc}I_{m} & A \\ 0 & I_{n}\end{array}\right) \mathbb{Z}^{m+n} \in \Omega$ and the 1-parameter subgroup of G of the form

$$
\begin{equation*}
g_{t}=\operatorname{diag}\left(e^{t / m}, \ldots, e^{t / m}, e^{-t / n}, \ldots, e^{-t / n}\right) \tag{2}
\end{equation*}
$$

Received 14 November 1995. Revision received 20 August 1996.
1991 Mathematics Subject Classification. Primary 11S13, 11S83; Secondary 57S25.
Author supported in part by an Alfred P. Sloan Graduate Dissertation Fellowship.

