COMMUTATOR COVERINGS OF SIEGEL THREEFOLDS

V. GRITSENKO AND K. HULEK

0. Introduction. In this paper we study cusp forms of small weight with respect to the paramodular group Γ_t and Siegel modular threefolds. Since cusp forms of weight 3 define canonical differential forms on the moduli space \mathcal{A}_t of (1, t)-polarized abelian surfaces, the existence or nonexistence of such forms has important geometric consequences.

For $t \ge 1$ the paramodular group Γ_t is not a maximal discrete group. One can add to it a number of exterior involutions to obtain a maximal normal extension Γ_t^* such that Γ_t^*/Γ_t is a product of \mathbb{Z}_2 -components. We then have the tower of Siegel threefolds

where $\Gamma'_t \subset \Gamma^{(l)} \subset \Gamma_t \subset \Gamma^{(r)} \subset \Gamma^*_t$ and Γ'_t is the commutator subgroup of Γ_t . We call these varieties *commutative neighbours* of \mathscr{A}_t ; they have very interesting properties. Neighbours $\mathscr{A}^{(r)}$ of spaces to the right of \mathscr{A}_t (i.e., finite quotients) were studied in [GH2]. The coverings in (0.1) to the left of \mathscr{A}_t are also galois with a finite abelian Galois group. This paper is devoted to neighbours $\mathscr{A}^{(l)}$ to the left of \mathscr{A}_t .

Recall that the geometric genus of \mathscr{A}_t can be zero only for twenty exceptional polarizations t = 1, ..., 12, 14, 15, 16, 18, 20, 24, 30, 36 (see [G1]). Hypothetically, for all of them \mathscr{A}_t is rational or unirational. (See [GP] for an announcement of some results in this direction.) Hence no weight-3 cusp forms should exist for these values of t. (For an easy proof of this fact for $t \leq 8$, see Corollary 3.3.) On the other hand, we construct many examples of cusp forms of small weight ($k \leq 3$) with respect to Γ_t with a character. It follows that \mathscr{A}_t usually has a double modular covering with positive geometric genus. One of the main results of this paper is the following theorem.

THEOREM 0.1. Let $\tilde{\mathscr{A}}_t^{com}$ be a smooth projective model of the maximal abelian covering $\mathscr{A}_t^{com} = \Gamma_t' \setminus \mathbb{H}_2$ of \mathscr{A}_t . Then

Received 20 March 1997.

Both authors supported by the Research Institute for Mathematical Sciences at Kyoto University and Deutsche Forschungsgemeinschaft grant number 436 RUS 17/108/95.