COMMUTATOR COVERINGS OF SIEGEL THREEFOLDS

V. GRITSENKO AND K. HULEK

0. Introduction. In this paper we study cusp forms of small weight with respect to the paramodular group Γ_{t} and Siegel modular threefolds. Since cusp forms of weight 3 define canonical differential forms on the moduli space \mathscr{A}_{t} of $(1, t)$-polarized abelian surfaces, the existence or nonexistence of such forms has important geometric consequences.

For $t \geqslant 1$ the paramodular group Γ_{t} is not a maximal discrete group. One can add to it a number of exterior involutions to obtain a maximal normal extension Γ_{t}^{*} such that $\Gamma_{t}^{*} / \Gamma_{t}$ is a product of \mathbb{Z}_{2}-components. We then have the tower of Siegel threefolds

where $\Gamma_{t}^{\prime} \subset \Gamma^{(t)} \subset \Gamma_{t} \subset \Gamma^{(r)} \subset \Gamma_{t}^{*}$ and Γ_{t}^{\prime} is the commutator subgroup of Γ_{t}. We call these varieties commutative neighbours of \mathscr{A}_{t}; they have very interesting properties. Neighbours $\mathscr{A}^{(r)}$ of spaces to the right of \mathscr{A}_{t} (i.e., finite quotients) were studied in [GH2]. The coverings in (0.1) to the left of \mathscr{A}_{t} are also galois with a finite abelian Galois group. This paper is devoted to neighbours $\mathscr{A}^{(l)}$ to the left of \mathscr{A}_{t}.

Recall that the geometric genus of \mathscr{A}_{t} can be zero only for twenty exceptional polarizations $t=1, \ldots, 12,14,15,16,18,20,24,30,36$ (see [G1]). Hypothetically, for all of them \mathscr{A}_{t} is rational or unirational. (See [GP] for an announcement of some results in this direction.) Hence no weight-3 cusp forms should exist for these values of t. (For an easy proof of this fact for $t \leqslant 8$, see Corollary 3.3.) On the other hand, we construct many examples of cusp forms of small weight $(k \leqslant 3)$ with respect to Γ_{t} with a character. It follows that \mathscr{A}_{t} usually has a double modular covering with positive geometric genus. One of the main results of this paper is the following theorem.

Theorem 0.1. Let $\tilde{\mathscr{A}}_{t}^{\text {com }}$ be a smooth projective model of the maximal abelian covering $\mathscr{A}_{t}^{\text {com }}=\Gamma_{t}^{\prime} \backslash \mathbf{H}_{2}$ of \mathscr{A}_{t}. Then

[^0]
[^0]: Received 20 March 1997.
 Both authors supported by the Research Institute for Mathematical Sciences at Kyoto University and Deutsche Forschungsgemeinschaft grant number 436 RUS 17/108/95.

