THE BINOMIAL FORMULA FOR NONSYMMETRIC MACDONALD POLYNOMIALS

SIDDHARTHA SAHI

1. Introduction. The q-binomial theorem [GR] is essentially the expansion of $(x-1)(x-q)\cdots(x-q^{k-1})$ in terms of the monomials x^d . In a recent paper [Ok], Okounkov has proved a beautiful multivariate generalization of this in the context of symmetric Macdonald polynomials [M1]. These polynomials have nonsymmetric counterparts [M2] that are of substantial interest; in this paper, we establish nonsymmetric analogues of Okounkov's results.

An integral vector $v \in \mathbb{Z}^n$ is called "dominant" if $v_1 \ge \cdots \ge v_n$; it is called a "composition" if $v_i \ge 0$ for all *i*. To avoid ambiguity, we reserve the letters u, v for integral vectors, α, β, γ for compositions, and λ, μ for "partitions" (dominant compositions).

We write |v| for $v_1 + \cdots + v_n$, and denote by w_v the (unique) shortest permutation in the symmetric group S_n such that $v^+ = w_v^{-1}(v)$ is dominant. Let **F** be the field $\mathbb{Q}(q,t)$ where q,t are indeterminates. We write $\tau = (1, t^{-1}, \ldots, t^{-n+1})$ and define $\bar{v} = \bar{v}(q,t)$ in \mathbb{F}^n by

$$\bar{v}_i = q^{v_i} (w_v \tau)_i.$$

Inhomogeneous analogues of nonsymmetric Macdonald polynomials were introduced in [Kn] and [S3]. They form an **F**-basis for $\mathbf{F}[x] = \mathbf{F}[x_1, \ldots, x_n]$, and are defined as follows.

Definition. $G_{\alpha} \equiv G_{\alpha}(x;q,t)$ is the unique polynomial of degree $\leq |\alpha|$ in $\mathbb{F}[x]$ such that

(1) the coefficient of $x^{\alpha} \equiv x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ in G_{α} is 1;

(2) G_{α} vanishes at $x = \overline{\beta}$, for all compositions $\beta \neq \alpha$ such that $|\beta| \leq |\alpha|$.

As shown in Theorem 3.9 of [Kn], the top homogeneous part of G_{α} is the nonsymmetric Macdonald polynomial E_{α} for the root system A_{n-1} (see [M2] and [C]). Moreover, by Theorem 4.5 of [Kn], we have $G_{\alpha}(\bar{\beta}) = 0$ unless " $\alpha \subseteq \beta$." Here $\alpha \subseteq \beta$ means that if we write $w = w_{\beta}w_{\alpha}^{-1}$, then $\alpha_i < \beta_{w(i)}$ if i < w(i) and $\alpha_i \leq \beta_{w(i)}$ if $i \ge w(i)$.

In this paper, we obtain several new results about the polynomials G_{α} . Our first result is a formula for the special value $G_{\alpha}(a\bar{0}) = G_{\alpha}(a\tau) \in \mathbb{F}[a]$, where a is an indeterminate. This can be described in the following manner. We identify α

Received 3 March 1997. Revision received 8 May 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 33C50; Secondary 33C80, 22E46.

This work supported by a National Science Foundation grant.