THE BINOMIAL FORMULA FOR NONSYMMETRIC MACDONALD POLYNOMIALS

SIDDHARTHA SAHI

1. Introduction. The q-binomial theorem [GR] is essentially the expansion of $(x-1)(x-q) \cdots\left(x-q^{k-1}\right)$ in terms of the monomials x^{d}. In a recent paper [Ok], Okounkov has proved a beautiful multivariate generalization of this in the context of symmetric Macdonald polynomials [M1]. These polynomials have nonsymmetric counterparts [M2] that are of substantial interest; in this paper, we establish nonsymmetric analogues of Okounkov's results.

An integral vector $v \in \mathbb{Z}^{n}$ is called "dominant" if $v_{1} \geqslant \cdots \geqslant v_{n}$; it is called a "composition" if $v_{i} \geqslant 0$ for all i. To avoid ambiguity, we reserve the letters u, v for integral vectors, α, β, γ for compositions, and λ, μ for "partitions" (dominant compositions).

We write $|v|$ for $v_{1}+\cdots+v_{n}$, and denote by w_{v} the (unique) shortest permutation in the symmetric group S_{n} such that $v^{+}=w_{v}^{-1}(v)$ is dominant. Let \mathbb{F} be the field $\mathbb{Q}(q, t)$ where q, t are indeterminates. We write $\tau=\left(1, t^{-1}, \ldots, t^{-n+1}\right)$ and define $\bar{v}=\bar{v}(q, t)$ in \mathbb{F}^{n} by

$$
\bar{v}_{i}=q^{v_{i}}\left(w_{v} \tau\right)_{i}
$$

Inhomogeneous analogues of nonsymmetric Macdonald polynomials were introduced in $[\mathrm{Kn}]$ and $[\mathrm{S} 3]$. They form an \mathbb{F}-basis for $\mathbb{F}[x]=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, and are defined as follows.

Definition. $\quad G_{\alpha} \equiv G_{\alpha}(x ; q, t)$ is the unique polynomial of degree $\leqslant|\alpha|$ in $\mathbb{F}[x]$ such that
(1) the coefficient of $x^{\alpha} \equiv x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ in G_{α} is 1 ;
(2) G_{α} vanishes at $x=\bar{\beta}$, for all compositions $\beta \neq \alpha$ such that $|\beta| \leqslant|\alpha|$.

As shown in Theorem 3.9 of $\left[\mathrm{Kn}\right.$], the top homogeneous part of G_{α} is the nonsymmetric Macdonald polynomial E_{α} for the root system A_{n-1} (see [M2] and [C]). Moreover, by Theorem 4.5 of $[\mathrm{Kn}]$, we have $G_{\alpha}(\bar{\beta})=0$ unless " $\alpha \subseteq \beta$." Here $\alpha \subseteq \beta$ means that if we write $w=w_{\beta} w_{\alpha}^{-1}$, then $\alpha_{i}<\beta_{w(i)}$ if $i<w(i)$ and $\alpha_{i} \leqslant \beta_{w(i)}$ if $i \geqslant w(i)$.

In this paper, we obtain several new results about the polynomials G_{α}. Our first result is a formula for the special value $G_{\alpha}(a \overline{0})=G_{\alpha}(a \tau) \in \mathbb{F}[a]$, where a is an indeterminate. This can be described in the following manner. We identify α

[^0]
[^0]: Received 3 March 1997. Revision received 8 May 1997.
 1991 Mathematics Subject Classification. Primary 33C50; Secondary 33C80, 22E46.
 This work supported by a National Science Foundation grant.

