CENTRALIZERS OF ELEMENTARY ABELIAN p-SUBGROUPS AND MOD-p COHOMOLOGY OF PROFINITE GROUPS

HANS-WERNER HENN

1. Introduction

1.1. Let G be a profinite group and p be a fixed prime. In this paper we will be concerned with $H_c^*(G; \mathbb{F}_p)$, the continuous cohomology of G with coefficients in the trivial module \mathbb{F}_p . We will abbreviate $H_c^*(G; \mathbb{F}_p)$ by $H^*(G; \mathbb{F}_p)$, or simply by H^*G if p is understood from the context. We recall that if G is the (inverse) limit of finite groups G_i , then $H^*G = \operatorname{colim} H^*G_i$.

Throughout this paper we will assume that H^*G is finitely generated as an \mathbb{F}_p -algebra. By work of Lazard [La], it is known that this holds for many interesting groups, for example, for profinite *p*-adic analytic groups like $GL(n, \mathbb{Z}_p)$, the general linear groups over the *p*-adic integers. In case H^*G is finitely generated as an \mathbb{F}_p -algebra, Quillen has shown [Q1] that there are only finitely many conjugacy classes of elementary abelian *p*-subgroups of *G* (i.e., groups isomorphic to $(\mathbb{Z}/p)^n$ for some natural number *n*). In other words, the following category $\mathscr{A}(G)$ is equivalent to a finite category: objects of $\mathscr{A}(G)$ are all elementary abelian *p*-subgroups of *G*; if E_1 and E_2 are elementary abelian *p*-subgroups of *G*, then the set of morphisms from E_1 to E_2 in $\mathscr{A}(G)$ consists precisely of those homomorphisms $\alpha : E_1 \to E_2$ of abelian groups for which there exists an element $g \in G$ with $\alpha(e) = geg^{-1}$ for all *e* in E_1 . The category $\mathscr{A}(G)$ plays an important role both in Quillen's results and in the work presented here.

This category entered into Quillen's work as follows. The assignment $E \mapsto H^*E$ extends to a functor from the opposite category $\mathscr{A}(G)^{op}$ to graded \mathbb{F}_{p^-} algebras and the restriction homomorphisms $H^*G \to H^*E$ (for E running through the elementary abelian *p*-subgroups of *G*) induce a canonical map of algebras $q: H^*G \to \lim_{\mathscr{A}(G)^{op}} H^*E$.

THEOREM 1.2 [Q1]. Let G be a profinite group and assume that H^*G is a finitely generated \mathbb{F}_p -algebra. Then the canonical map $q: H^*G \to \lim_{\mathscr{A}(G)^{op}} H^*E$ is an F-isomorphism; in other words, q has the following properties.

• If $x \in \text{Ker } q$, then x is nilpotent.

• If $y \in \lim_{\mathscr{A}(G)^{op}} H^*E$, then there exists an integer n with $y^{p^n} \in \operatorname{Im} q$.

1.3. In our main result we use the full subcategory $\mathscr{A}_*(G)$ of $\mathscr{A}(G)$ whose objects are all elementary abelian *p*-subgroups except the trivial subgroup. The

Received 24 March 1995. Revision received 18 December 1996.