THE DIOPHANTINE EQUATION $A x^{p}+B y^{q}=C z^{r}$

FRITS BEUKERS

1. Introduction. Let $p, q, r \in \mathbf{Z}_{\geqslant 2}$ and $A, B, C \in \mathbf{Z}$ with $A B C \neq 0$. Consider the diophantine equation

$$
\begin{equation*}
A x^{p}+B y^{q}+C z^{r}=0, \quad \operatorname{gcd}(x, y, z)=1, \quad x y z \neq 0 \tag{F}
\end{equation*}
$$

in the unknowns $x, y, z \in \mathbf{Z}$.
It was proved by Darmon and Granville in 1993 [DG] that if $1 / p+$ $1 / q+1 / r<1$, then (F) has finitely many solutions. We call this the hyperbolic case. As a curiosity, consider the case $A=B=-C=1$. The only solutions known until now are, up to permutations and sign changes,

$$
\begin{gathered}
1^{k}+2^{3}=3^{2}(k>6), \quad 13^{2}+7^{3}=2^{9}, \quad 2^{7}+17^{3}=71^{2}, \\
2^{5}+7^{2}=3^{4}, \quad 3^{5}+11^{4}=122^{2}, \quad 17^{7}+76271^{3}=21063928^{2}, \\
1414^{3}+2213459^{2}=65^{7}, \quad 33^{8}+1549034^{2}=15613^{3}, \\
43^{8}+96222^{3}=30042907^{2}, \quad 9262^{3}+15312283^{2}=113^{7} .
\end{gathered}
$$

The smaller solutions have been known for a long time; the larger ones were found by a computer search performed on Fermat day at Utrecht in November 1993, a day devoted to Wiles's work on Fermat's last theorem. Notice that in each solution an exponent 2 occurs. This leads to the following question raised by Tijdeman and Zagier.

Question 1.1. Suppose $p, q, r \geqslant 3$. Do there exist solutions to $x^{p}+y^{q}=z^{r}$ in $x, y, z \in \mathbf{Z}$ with $x y z \neq 0$ and $\operatorname{gcd}(x, y, z)=1$?

For further reading concerning the hyperbolic case, see [DM].
When $1 / p+1 / q+1 / r=1$ (the Euclidean case), we can list the possible sets $\{p, q, r\}$ by $\{3,3,3\},\{2,4,4\},\{2,3,6\}$. In this case we find ourselves looking at the problem of rational points on elliptic curves with j-values zero and 1728. The study of rational points on elliptic curves has become a vast field of interest in the last ten years, to which we have nothing to add in this paper.

Finally, we have the so-called spherical case $1 / p+1 / q+1 / r>1$. The possible sets $\{p, q, r\}$ are $\{2,2, k\}$ with $k \geqslant 2$ and $\{2,3,3\},\{2,3,4\},\{2,3,5\}$. Apart from

Received 9 June 1995. Revision received 25 September 1996.

