THE NODAL LINE OF THE SECOND EIGENFUNCTION OF THE LAPLACIAN IN \mathbb{R}^2 CAN BE CLOSED

M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF, AND N. NADIRASHVILI

Let D be a bounded domain in \mathbb{R}^2 . Consider the corresponding Dirichlet problem

(1)
$$-\Delta u_i = \lambda_i u_i, \quad i = 1, 2 \dots,$$

with $u_i \in W_0^{1,2}(D)$ (the closure of $C_0^{\infty}(D)$ in the $W^{1,2}$ -norm [GT]) and with eigenvalues $\lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots$.

We see that u_1 has one sign but the nodal set of u_2 , $\mathcal{N}(u_2) = \overline{\{x \in D : u_2(x) = 0\}}$ is nonempty. In fact, according to Courant's nodal theorem, there are domains D_+ and D_- such that $\overline{D} = \overline{D_+ \cup D_-}$ with $u_2 > 0$ in D_+ , $u_2 < 0$ in D_- , and $u_2 = 0$ in ∂D_+ and ∂D_- .

In 1967 Payne [P] conjectured that u_2 cannot have a closed nodal line in D. In 1982 Yau [Y] asked the same question for convex domains in \mathbb{R}^2 . Melas [M] recently has settled the convex case for the C^{∞} -boundary and this was extended to the general boundary by Alessandrini [A]. Also, for convex D Jerison [J] and Grieser and Jerison [GJ] obtained interesting results on the location of $\mathcal{N}(u_2)$.

In this note we construct a nonconvex, not simply connected domain for which the second eigenfunction has a closed nodal line.

We first describe the domain. We use polar coordinates, r = |x|, $x_1 = r \cos \omega$, and $x_2 = r \sin \omega$, $-\pi \le \omega \le \pi$.

Let $0 < R_1 < R_2$, $B_{R_i} = \{x \in \mathbb{R}^2 : r < R_i\}$, i = 1, 2, and the annulus $M_{R_1,R_2} = B_{R_2} \setminus \overline{B_{R_1}}$. We shall construct our domain by opening passages between M_{R_1,R_2} and B_{R_1} . First we pick R_1 and R_2 such that

(2)
$$\lambda_1(B_{R_1}) < \lambda_1(M_{R_1,R_2}) < \lambda_2(B_{R_1}),$$

where the $\lambda_i(\cdot)$ denote the corresponding Dirichlet eigenvalues. In particular, we then have

(3)
$$\lambda_1(B_{R_1} \cup M_{R_1,R_2}) = \lambda_1(B_{R_1}) \text{ and} \\\lambda_2(B_{R_1} \cup M_{R_1,R_2}) = \lambda_1(M_{R_1,R_2}).$$

Received 14 November 1995. Revision received 21 October 1996. Authors' work supported by Bundesministerium für Wissenschaft and Verkehr, Austria.