METAPLECTIC EISENSTEIN SERIES AND THE BUMP-HOFFSTEIN CONJECTURE

TOSHIAKI SUZUKI

Introduction. By a metaplectic form we understand an automorphic function on an *n*-fold cover of GL_r over a global field **k** containing *n*th roots of unity. According to Kubota, the *theta series* Θ_r is defined to be a metaplectic form that is obtained as a residue of metaplectic Eisenstein series. We are chiefly interested in understanding the Fourier coefficient \mathbf{a}_r of Θ_r . In [KP] we find the first fundamental result (as well as the formulation and the terminology) in the theory of metaplectic forms, from which some information on \mathbf{a}_r can be drawn: in particular, $\mathbf{a}_r = 0$ for r > n, and \mathbf{a}_n is expressed as a product of *n*th-order Gauss sums. The author's result, obtained in [S1], also seems to be fundamental: a duality between \mathbf{a}_r and $\overline{\mathbf{a}}_{n-r}$ (the complex conjugation of \mathbf{a}_{n-r}) with respect to $\overline{\mathbf{a}}_n$ (see Theorem 8.4). In fact, we could partly prove Patterson's conjecture on the biquadratic theta series via this relation (see [S1], [S2]).

In this paper, we show that Bump-Hoffstein's conjecture (see [BH1]) is also a consequence of our result. This conjecture states a relationship between

- the Fourier coefficients of the Eisenstein series E(s, Θ_{r1} ⊗ Θ_{r2}) associated to a tensor product of theta series Θ_{r1} ⊗ Θ_{r2} (r₁, r₂ ≤ n), and
- (2) the two Rankin-Selberg convolutions for pairs of theta series $(\Theta_{r_1}, \Theta_{n-r_2})$ and $(\Theta_{r_2}, \overline{\Theta}_{n-r_1})$.

For the reason stated in [S1], we shall prove the case where the ground field \mathbf{k} is a function field. However, we shall not assume that \mathbf{k} is a function field until Section 7. This is because we want to mention that a Dirichlet series whose coefficients are *n*th power Legendre symbols

$$\sum_{\ell} \varepsilon \left(\frac{m}{\ell}\right)_{\!\!S}^{\!-1} |\ell|_{\infty}^{-s-1}$$

will appear as a Fourier coefficient of $E(s, \Theta_1 \otimes \Theta_{n-1})$ (Proposition 6.4). Bump and Hoffstein observed this fact in the case n = 3 [BH2].

We freely make use of the results from [KP]. In Part I (local theory), after recalling the notation that we need, we compute some class-1 Whittaker functions at certain points using Patterson's formula [P]. This result is of some independent interest. In Part II (global theory), we start with introducing the Eisenstein series $E(s, \Theta_{r_1} \otimes \Theta_{r_2})$. In Section 6, by the local result mentioned above, we show that a certain Fourier coefficient $\Psi(s, \Theta_{r_1} \otimes \Theta_{r_2})$ of $E(s, \Theta_{r_1} \otimes \Theta_{r_2})$ is equal to a

Received 12 August 1996.