CYCLES OF QUADRATIC POLYNOMIALS AND RATIONAL POINTS ON A GENUS-2 CURVE

E. V. FLYNN, BJORN POONEN, AND EDWARD F. SCHAEFER

1. Introduction. Let $g(z) \in \mathbb{Q}(z)$ be a rational function of degree $d \geqslant 2$. We consider g as a map on $\mathbb{P}^{1}(\mathbb{C})$. If $x \in \mathbb{P}^{1}(\mathbb{C})$ and the sequence

$$
x, g(x), g(g(x)), \ldots, g^{\circ n}(x), \ldots
$$

is eventually periodic, then x is called a preperiodic point for g. If, furthermore, $g^{\circ n}(x)=x$, then x is called a periodic point of g of period n, and its orbit

$$
\left\{x, g(x), g(g(x)), \ldots, g^{\circ(n-1)}(x)\right\}
$$

is called an n-cycle if x does not actually have smaller period. Northcott [31] proved in 1950 that for fixed g, there are only finitely many preperiodic points in $\mathbb{P}^{1}(\mathbb{Q})$. Moreover, these can be computed effectively given g. This theorem also holds over any fixed number field, and also for morphisms of \mathbb{P}^{n} of degree at least 2. Since then, the theorem (in varying degrees of generality) has been rediscovered by many authors [30], [20], [2].

It is much more difficult to obtain uniform results for rational functions of a given degree. Morton and Silverman [28] have proposed the following conjecture.

Conjecture 1. Let K / \mathbb{Q} be a number field of degree D, and let $\phi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ be a morphism of degree $d \geqslant 2$ defined over K. The number of K-rational preperiodic points of ϕ can be bounded in terms of D, n, and d only.

Silverman, in talks on the subject, has pointed out that even the case $n=1$ and $d=4$ is strong enough to imply the recently proved strong uniform boundedness conjecture for torsion of elliptic curves (see [23]); namely, that for any D there exists $C>0$ such that for any elliptic curve E over a number field K of degree D over $\mathbb{Q}, \# E(K)_{\text {tors }}<C$. This is because torsion points of elliptic curves are exactly the preperiodic points of the multiplication-by- 2 map, and their x coordinates are preperiodic points for the degree-4 rational map that gives

[^0]
[^0]: Received 25 July 1995. Revision received 22 September 1996.
 The second author is supported by a National Science Foundation Mathematical Sciences Postdoctoral Research Fellowship. Research at the Mathematical Sciences Research Institute is supported in part by National Science Foundation grant DMS-9022140. The third author is supported by a National Security Agency Young Investigators Grant and a Paul Locatelli Junior Faculty Fellowship.

