THE STABLE RANK OF SOME FREE PRODUCT C*-ALGEBRAS

KEN DYKEMA, UFFE HAAGERUP, AND MIKAEL RØRDAM

Introduction. We prove that the reduced group C^* -algebra $C^*_{red}(G)$ has stable rank 1 if G is a discrete group arising as a free product $G_1 * G_2$ where $|G_1| \ge 2$ and $|G_2| \ge 3$. Recall that a unital C^* -algebra A is said to have stable rank 1 if the group of invertible elements in A is a norm dense subset of A. It is an open problem¹ if every finite, simple C^* -algebra has stable rank 1. Our result follows from a more general result where it is proved that if (\mathfrak{A}, τ) is the reduced free product of a family $(A_i, \tau_i), i \in I$, of unital C^* -algebras A_i with normalized faithful traces τ_i , and if the family satisfies the Avitzour condition (that is, the traces, τ_i , are not too lumpy in a specific sense), then \mathfrak{A} has stable rank 1.

The notion of stable rank was introduced by M. Rieffel in [11] with the purpose of establishing what one might call nonstable K-theory results for certain concrete C*-algebras, most notably the irrational rotation C*-algebras. On a more speculative note, stable rank (which associates a number in $\{1, 2, 3, ...\} \cup \{\infty\}$ to every C*-algebra) should measure the (noncommutative) dimension of the C*-algebra, with stable rank equal to one corresponding to dimension 0 or 1. (It has later turned out that different definitions of dimensions, which agree in the "commutative" case, generalize to dimension concepts for C*-algebras which do not agree.)

Some of the nonstable K-theory results, obtained in [11] and [13], for unital C^* -algebras A of stable rank 1 are as follows. The three relations on projections in A (or in a matrix algebra over A), Murray-von Neumann equivalence, unitary equivalence, and homotopy equivalence, are the same. Moreover, if p, q are projections in A (or in a matrix algebra over A) such that $[p]_0 = [q]_0$ in $K_0(A)$, then p and q are equivalent with respect to either of the three relations mentioned above. Also, the natural group homomorphism

$$\mathrm{U}(A)/\mathrm{U}_0(A) \to K_1(A),$$

where U(A) is the group of unitary elements in A and $U_0(A)$ its connected component containing the unit of A, is an isomorphism.

Another property of C^* -algebras of stable rank 1 can be found in [7]. It is observed in that paper that if A is a C^* -algebra of stable rank 1, then each

Received 12 September 1996.

¹ After this paper was written, Jesper Villadsen [15] found a stably finite, simple C^* -algebra with stable rank greater than 1.