LIMIT DISTRIBUTION OF SMALL POINTS ON ALGEBRAIC TORI

YURI BILU

1. Introduction. We denote by \mathbb{C}^* the multiplicative group of complex numbers, by $\overline{\mathbb{Q}}$ the field of all algebraic numbers, and by $\overline{\mathbb{Q}}^*$ its multiplicative group. Let δ_{α} be the Dirac measure at $\alpha \in (\mathbb{C}^*)^N$, that is, the probability measure on $(\mathbb{C}^*)^N$, supported¹ at $\{\alpha\}$. Also, let ν be the probability measure on $(\mathbb{C}^*)^N$, supported at the unit polycircle $|z_1| = \cdots = |z_N| = 1$, where it coincides with the normalized Haar measure.

Recall that a sequence $\{\mu_k\}$ of probability measures on a metric space S weakly converges to μ (notation: $\mu_k \xrightarrow{w} \mu$) if for any bounded continuous function $f: S \to \mathbf{R}$ we have $(f, \mu_k) \to (f, \mu)$ as $k \to \infty$.

A sequence $\{\alpha_k\}$ of points in $(\mathbf{\hat{Q}}^*)^N$ is strict if any proper algebraic subgroup of $(\mathbf{\bar{Q}}^*)^N$ contains α_k for only finitely many values of k.

Given $\alpha = (\alpha^{(1)}, \ldots, \alpha^{(N)}) \in (\overline{\mathbf{Q}}^*)^N$, we denote by $h(\alpha)$ its absolute logarithmic height:

$$h(\alpha) = [\mathbf{K} : \mathbf{Q}]^{-1} \sum_{v} [\mathbf{K}_{v} : \mathbf{Q}_{v}] \max(0, \log|\alpha^{(1)}|_{v}, \dots, \log|\alpha^{(N)}|_{v}), \qquad (1)$$

where **K** is a number field containing $\alpha^{(1)}, \ldots, \alpha^{(N)}$, and the summation is extended to all valuations of **K**, normalized so that their restrictions to **Q** define usual infinite or *p*-adic valuations. It is well known [6, Section 3.1] that the sum in (1) does not depend on the particular choice of **K**.

Similarly, given $\alpha \in (\bar{\mathbf{Q}}^*)^N$, we define a probability measure $\bar{\delta}_{\alpha}$ on $(\mathbf{C}^*)^N$ by

$$ar{\delta}_{lpha} = \left[\mathbf{K} : \mathbf{Q}
ight]^{-1} \sum_{\sigma: \mathbf{K} \hookrightarrow \mathbf{C}} \delta_{\sigma(lpha)} \,,$$

where \mathbf{K} is as in the previous paragraph, and the summation is extended to all distinct complex embeddings of \mathbf{K} . Again, the sum is independent upon the particular choice of \mathbf{K} .

THEOREM 1.1. Let $\{\alpha_k\}$ be a strict sequence of points in $(\bar{\mathbf{Q}}^*)^N$ with $h(\alpha_k) \to 0$. Then $\bar{\delta}_{\alpha_k} \xrightarrow{w} v$.

This theorem was inspired by recent works of Szpiro, Ullmo, and Zhang (see [14] and [18]), who obtained a similar result for small points on abelian varie-

Received 13 August 1996. Revision received 19 September 1996.

¹ We say that a probability measure μ is supported at U if $\mu(U) = 1$.