A CHARACTERIZATION OF THE PERIODIC CALLAHAN-HOFFMAN-MEEKS SURFACES IN TERMS OF THEIR SYMMETRIES

FRANCISCO MARTÍN AND DOMINGO RODRÍGUEZ

1. Introduction. The first examples of periodic minimal surfaces with more than one end were discovered by Riemann [12] in 1867. He constructed a oneparametric family of properly embedded minimal surfaces $\left\{R_{\lambda}: \lambda>0\right\}$, which are invariant under a translation T. Furthermore, the quotient R_{λ} / T has genus 1 , two ends, and total curvature -8π. Riemann proved also that every minimal surface expressible as a union of circles in parallel planes is either a subset of some R_{λ} or a subset of the catenoid. Recently, López, Ritoré, and Wei [8] have characterized Riemann's examples as the only embedded minimal tori with two planar ends in \mathbb{R}^{3} / T.

These surfaces were generalized by Callahan, Hoffman, and Meeks [2] in 1989. They found examples of complete embedded minimal surfaces, with an infinite number of annular ends. This discrete family consists of a surface M_{k}, for each integer $k>0$, which is invariant under a cyclic group of vertical translations \mathscr{T}. The quotient M_{k} / \mathscr{T} has genus $2 k+1$, two ends, and $8(k+1)$ symmetries.

The method of construction was their starting point to obtain the first known examples of embedded minimal surfaces with an infinite number of annular ends and invariant under a screw motion, in [3]. These examples, $M_{k}(\theta)$, were obtained by twisting the surfaces M_{k} by angle $\theta,|\theta|<\pi /(k+1)$. For another interesting paper on the surfaces $M_{k}(\theta)$, see [1].

Hoffman and Wohlgemuth [7] have also obtained new examples derived from the M_{k} surfaces, by the insertion of Neovius handles.

In this paper we study in depth the surfaces M_{k}. First, we have proved that the period problem has only one solution (see Propositions 1 and 2 in Section 4). This fact was conjectured by Callahan, Hoffman, and Meeks in [2] and [3], and it is the first step in any classification theorem. As a consequence of this, we are able to prove the following theorem.

Main Theorem. Let \tilde{M} be a properly embedded minimal surface in \mathbb{R}^{3} satisfying the following:
(i) \tilde{M} has an infinite number of annular ends;
(ii) \tilde{M} is invariant under a cyclic group of translations \mathscr{T};

