BOUNDED COHOMOLOGY AND TOPOLOGICALLY TAME KLEINIAN GROUPS

TERUHIKO SOMA

The notion of bounded cohomology was introduced by Gromov [5]. The bounded cohomology $H_b^*(X; \mathbb{R})$ for any topological space X is defined with the subcomplex $C_b^*(X)$ of the usual cochain complex $C^*(X)$ consisting of bounded cochains. This cohomology has the advantage of admitting the naturally defined pseudonorm $|| \cdot ||$. According to Soma [18], in general, this pseudonorm is not a norm. So, we also consider the quotient space

 $HB^{*}(X; \mathbf{R}) = H_{b}^{*}(X; \mathbf{R}) / \{ [c] \in H_{b}^{*}(X; \mathbf{R}); ||[c]|| = 0 \},\$

and denote the element of $HB^*(X; \mathbb{R})$ corresponding to $[c] \in H^*_b(X; \mathbb{R})$ by $[c]_B$. Note that $HB^*(X; \mathbb{R})$ is a Banach space with the norm $|| \cdot ||$.

The second bounded cohomology of a closed surface of genus g > 1 was studied by Brooks-Series [2], Mitsumatsu [11], and Barge-Ghys [1], and the third by Yoshida [22] and Soma [17]. Here, we will study further the third bounded cohomology and connections with hyperbolic 3-manifolds.

For a torsion-free Kleinian group Γ , the bounded 3-cocycle ω_{Γ} on the hyperbolic 3-manifold $M_{\Gamma} = \mathbf{H}^3/\Gamma$ is defined by $\omega_{\Gamma}(\sigma) = \Omega_{\Gamma}(\operatorname{straight}(\sigma))$ for any singular simplex $\sigma: \Delta^3 \longrightarrow M_{\Gamma}$, where Ω_{Γ} is the volume form on M_{Γ} . In fact, since the volume of any straight simplex is less than the volume \mathbf{v}_3 of a regular ideal simplex v_0 in \mathbf{H}^3 , and since v_0 is well approximated by a usual straight simplex in \mathbf{H}^3 , the norm $||\omega_{\Gamma}||$ is equal to \mathbf{v}_3 . So, the *fundamental class* $[\omega_{\Gamma}] \in H_b^3(M_{\Gamma}; \mathbf{R})$ of M_{Γ} has the pseudonorm $||[\omega_{\Gamma}]|| \leq \mathbf{v}_3$. In [17], we were mainly concerned with Kleinian groups, Γ , isomorphic to closed surface groups and such that the injectivity radii $\operatorname{inj}(M_{\Gamma}) = {\operatorname{inj}_{M_{\Gamma}}(x); x \in M_{\Gamma}} > 0$, in which Minsky's ending lamination theorem [10] played an important role. In particular, this theorem was used effectively to prove rigidity theorems [20, Theorems A and D] for certain hyperbolic 3-manifolds M_{Γ} in terms of the "distance" between the fundamental classes $[\omega_{\Gamma}]$ with respect to the pseudonorm.

In this paper, we consider the case where Γ are topologically tame Kleinian groups. Our proofs here are based on Canary's results about topologically tame Kleinian groups in [3] and his covering theorem in [4].

THEOREM 1. Suppose that Γ is a topologically tame Kleinian group such that the volume of M_{Γ} is infinite. Then $[\omega_{\Gamma}] = 0$ in $H^3_b(M_{\Gamma}; \mathbf{R})$ if and only if Γ is either

Received 14 June 1994. Revision received 4 March 1996.