C^{2} A PRIORI ESTIMATES FOR DEGENERATE MONGE-AMPĖRE EQUATIONS

PENGFEI GUAN

1. Introduction. In this paper, we are concerned with the Dirichlet problem for degenerate Monge-Ampère equations:

$$
\left\{\begin{array}{l}
\operatorname{det}\left(u_{i j}\right)=f \quad \text { in } \Omega \subset \mathbf{R}^{n} \tag{1}\\
\left.u\right|_{\partial \Omega}=\phi
\end{array}\right.
$$

The Dirichlet problem for elliptic Monge-Ampère equations has received considerable study. It is quite complete due to the important works of Caffarelli-Nirenberg-Spruck [CNS1] and Krylov [K1]. (See also references in the above papers for the history of the problem.) When f is only assumed nonnegative, the equation is degenerate. In this case, in general, one can only expect the solution to be $C^{1,1}$. Thus, much attention has been directed to obtaining C^{2} a priori estimates of the problem. The interior and global C^{2} estimates were obtained, respectively, by Trudinger-Urbas [TU2] and Caffarelli-Nirenberg-Spruck [CNS2] for the homogeneous equation:

$$
\left\{\begin{array}{l}
\operatorname{det}\left(u_{i j}\right)=0 \quad \text { in } \Omega \subset \mathbf{R}^{n} \tag{2}\\
\left.u\right|_{\partial \Omega}=\phi .
\end{array}\right.
$$

$C^{1,1}$ regularity for inhomogeneous degenerate equations (1) was studied by Caffarelli-Kohn-Nirenberg-Spruck [CKNS] and Krylov [K2] (see also the references therein) under the assumption that $f=g^{n}$ for some $C^{1,1}$ function g. Since $F\left(u_{i j}\right)=\operatorname{det}\left(u_{i j}\right)^{1 / n}$ is concave, the assumption $f=g^{n}$ seems natural for obtaining C^{2} estimates for the equation (1). This assumption has been used in most of the works related to the regularity problem of the equation (1). Except in [C], Caffarelli obtained $C^{1, \alpha}$ regularity for convex solutions of equation (1) under a very general condition that the right-hand side of (1) is a measure satisfying the doubling property. As we know, the assumption $f=g^{n}$ is quite restrictive. Even in the $n=2$ case, not every smooth function is a square of a $C^{1,1}$ function. In dealing with geometric problems, one would like to know $C^{1,1}$ (and better) regularity of the solution when f is only assumed to be nonnegative and smooth (e.g., [GL1]). Therefore, we ask: Is the solution of equation (1) in $C^{1,1}$ if f is nonnegative and smooth?

Received 3 October 1995.
The author supported in part by NSERC grant OGP0046732 and a Sloan Fellowship.

