POISSON HOMOGENEOUS SPACES AND LIE ALGEBROIDS ASSOCIATED TO POISSON ACTIONS

JIANG-HUA LU

CONTENTS

1.	Introduction	261
2.	Lie algebroids	263
3.	Poisson Lie groups and Poisson actions	267
4.	The Lie algebroid $A = (P \times g) \bowtie T^*P \dots$	270
5.	Examples	277
6.	Proof of Theorem 4.1	279
7.	Application to Poisson homogeneous spaces	281
8.	A subcomplex of $(\Gamma(\bigwedge A^*), d_A)$	292
9.	The Lie groupoid of A	298

1. Introduction. This work is motivated by a result of Drinfeld in [Dr2]. Recall [Dr1], [STS] that a *Poisson Lie group* is a Lie group G together with a Poisson structure such that the group multiplication map

$$G \times G \rightarrow G$$

is a Poisson map. Given a Poisson Lie group G and a Poisson manifold P, an action

$$\sigma: G \times P \to P$$

of G on P is called a Poisson action if the action map σ is a Poisson map. When the action is transitive, we say that P is a Poisson homogeneous G-space. Poisson G-spaces are the semiclassical analogs of quantum spaces with quantum group actions. Special cases of Poisson homogeneous G-spaces can be found in [DaSo], [Lu1], [Za].

Let P be a Poisson homogeneous G-space. In [Dr2], Drinfeld shows that corresponding to each $p \in P$, there is a maximal isotropic Lie subalgebra I_p of the Lie algebra \mathfrak{d} , the double Lie algebra of the tangent Lie bialgebra $(\mathfrak{g},\mathfrak{g}^*)$ of G. Moreover, for $g \in G$, the two Lie algebras I_p and I_{gp} are related by $I_{gp} = \mathrm{Ad}_g I_p$ via the adjoint action of G on \mathfrak{d} . In particular, they are isomorphic as Lie algebras.

Received 22 May 1995.