POINTWISE ERGODIC THEOREMS FOR RADIAL AVERAGES ON SIMPLE LIE GROUPS II

AMOS NEVO

§1. Statement of results, the method of proof, and some remarks

- 1.1. Definitions and statement of results. The present paper is a continuation of [N1], and we begin by briefly recalling the setup and the notation:
 - $G = G_n = SO^0(n, 1)$ is the group of orientation-preserving isometries of n-dimensional real hyperbolic space H^n , $n \ge 2$.
 - K = a fixed maximal compact subgroup. $m_K = \text{Haar probability measure}$.
 - $A = \{a_t | t \in \mathbb{R}\} = \text{a one-parameter group of hyperbolic translations such that } G = KA_+K \text{ is a Cartan decomposition.}$
 - σ_t = the bi-K-invariant probability measure on G given by $\sigma_t = m_K * \delta_{a_t} * m_K$, where * denotes convolution. Note that $\sigma_0 = m_K$.
 - $\mu_t = 1/t \int_0^t \sigma_s \, ds$, the uniform average of $\sigma_s, 0 \le s \le t$. We define $\mu_0 = m_K$.
 - M(G, K) = the commutative convolution algebra (of bi-K-invariant complex bounded Borel measures on G) generated by $\sigma_t, t \ge 0$.
 - $(X, \mathcal{B}, \lambda) = a$ standard Borel space with a Borel measurable G-action which preserves the probability measure λ .
 - $\pi(v)f(x) = \int_G f(g^{-1}x) dv(g) =$ the Markov operator on $L^p(X)$ corresponding to a probability measure v on G.
 - $M_{\mu}f(x) = \sup_{t \ge 0} |\pi(\mu_t)f(x)|$, and $M_{\sigma}f(x) = \sup_{t \ge 0} |\pi(\sigma_t)f(x)|$, maximal functions associated with the action of σ_t and μ_t in $L^p(X)$, $1 \le p \le \infty$.

Finally, recall also the following definition.

Definition. Let v_t , $t \ge 0$, be a one-parameter family of probability measures on G. Assume that $t \mapsto v_t \in M(G)$ is continuous in the w^* -topology of M(G) as the dual of $C_0(G)$. Let $(X, \mathcal{B}, \lambda)$ denote a G-space as above.

(1) v_t is called a pointwise ergodic family in L^p if, for any $f \in L^p(X)$,

$$\lim_{t\to\infty}\pi(v_t)f(x)=E_1(f)(x),$$

where the convergence is pointwise almost everywhere and in the L^p -norm, and E_1 is the conditional expectation of f with respect to the σ -algebra of G-invariant sets.

(2) v_t is said to satisfy the local ergodic theorem in L^p if, for any $f \in L^p(X)$, $\lim_{t\to 0} \pi(v_t)f(x) = \pi(v_0)f(x)$, where the convergence is for almost every x, and in the L^p -norm.

Received 18 May 1995. Revision received 26 March 1996.