ON DEGENERATE SECANT AND TANGENTIAL VARIETIES AND LOCAL DIFFERENTIAL GEOMETRY

J. M. LANDSBERG

§1. Introduction and conventions. One way to study geometric properties of a variety $X^{n} \subset \mathbb{C P}^{n+a}$ is by studying coarse geometric properties of auxiliary varieties one constructs from X. The auxiliary varieties we will study in this paper are the secant variety $\sigma(X)$ and the tangential variety $\tau(X)$, and the coarse properties of $\sigma(X)$ and $\tau(X)$ we will study are their dimensions. For information on how this study fits into larger questions, see [LV]. It turns out that smooth varieties of small codimension with degenerate $\tau(X)$ (degenerate meaning that $\tau(X)$ is not the entire ambient space) carry a remarkable amount of infinitesimal geometric structure. Before going into details, we will need a few definitions.

Given a variety $X^{n} \subset \mathbb{P}^{n+a}$, the secant variety $\sigma(X)$ of X is defined to be the union of all points on all secant and tangent lines (i.e., \mathbb{P}^{1} 's) of X. More precisely, given $p, q \in \mathbb{P}^{n+a}$, let $\mathbb{P}_{p q}^{1} \subset \mathbb{P}^{n+a}$ denote the projective line containing p and q. Then

$$
\sigma(X):=\overline{\left\{x \in \mathbb{P}^{n+a} \mid x \in \mathbb{P}_{p q}^{1} \text { for some } p, q \in X\right\}}
$$

Secant varieties have been studied extensively. Two important results on them are the following.

Theorem 1.1 (Zak's theorem on linear normality [FL], [Z1]). Let $X^{n} \subset$ $\mathbb{C P}^{n+a}$ be a smooth variety not contained in a hyperplane with $\sigma(X) \neq \mathbb{C P}^{n+a}$. Then $a \geqslant(n / 2)+2$.

Theorem 1.2 (Zak's theorem on Severi varieties [LV], [Z1]). Let $X^{n} \subset$ $\mathbb{C P}^{n+a}$ be a smooth variety not contained in a hyperplane with $\sigma(X) \neq \mathbb{C P} \mathbb{P}^{n+a}$. If $a=(n / 2)+2$, then X is one of the following:
(i) Veronese $\mathbb{P}^{2} \subset \mathbb{P}^{5}$;
(ii) Segre $\mathbb{P}^{2} \times \mathbb{P}^{2} \subset \mathbb{P}^{8}$;
(iii) Plücker embedded Grassmannian $G\left(\mathbb{C}^{2}, \mathbb{C}^{6}\right) \subset \mathbb{P}^{14}$;
(iv) $E_{6} / P \subset \mathbb{P}^{26}$.

These four varieties, now called Severi varieties, also have other special properties. For example, they classify the quadro-quadro Cremona transforms (see [ESB]). We give a new proof of Theorem 1.2 via local differential geometry.

This work was done while the author was partially supported by a National Science Foundation Postdoctoral Fellowship and later by National Science Foundation grant DMS-9303704.

