A NEW ISOPERIMETRIC COMPARISON THEOREM FOR SURFACES OF VARIABLE CURVATURE

ITAI BENJAMINI AND JIANGUO CAO

§0. Introduction. In this paper, we consider isoperimetric profiles of Riemannian surfaces with variable curvature. The isoperimetric profile of a Riemannian manifold M^n is the function I_{M^n} : $[0, vol(M^n)) \rightarrow R_+$ defined by

 $I_{M^n}(v) = \inf \{ \operatorname{vol}_{n-1}(\partial \Omega) | \Omega \subset M^n \text{ a compact domain}$ with smooth boundary $\partial \Omega$, $\operatorname{vol}(\Omega) = v \}.$

In general, the isoperimetric profile $I_{M^n}(\cdot)$ is difficult to compute. It is also difficult to estimate isoperimetric profile in terms of curvature and other geometric data. However, some known examples of symmetric spaces indicate that $I_{M^n}(\cdot)$ may depend on its sectional curvature K_{M^n} .

For example, on the *n*-dimensional Euclidean space \mathbb{R}^n , the classical isoperimetric inequality says that if $\Omega \subset \mathbb{R}^n$ is a compact domain with smooth boundary $\partial \Omega$, then

$$\operatorname{vol}_{n-1}(\partial\Omega) \ge c_n(\operatorname{vol}(\Omega))^{(n-1)/n}$$

where $\operatorname{vol}_{n-1}(\partial\Omega)$ denotes the (n-1)-dimensional volume of $\partial\Omega$, $\operatorname{vol}(\Omega)$ denotes the volume of Ω , and

$$c_n = rac{\operatorname{vol}_{n-1}(S^{n-1}(1))}{\operatorname{vol}(B^n(1))^{(n-1)/n}}.$$

Hence, we have

$$I_{\mathbb{R}^n}(v) = c_n v^{(n-1)/n}.$$
 (0.1)

If the sectional curvature satisfies $K_{M^n} \leq -1$ and M^n is simply connected, then

$$\operatorname{vol}_{n-1}(\partial\Omega) \ge (n-1)\operatorname{vol}(\Omega)$$

Received 7 October 1994. Revision received 2 October 1995.

Benjamini was supported by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University. Cao is supported in part by National Science Foundation grants DMS-9102212 and DMS 93-03711.