TORSION ZERO-CYCLES ON THE SELF-PRODUCT OF A MODULAR ELLIPTIC CURVE

ANDREAS LANGER AND SHUJI SAITO

§0. Introduction. Let E be a modular elliptic curve defined over \mathbb{Q} with the conductor N, and let $X = E \times_{\mathbb{Q}} E$, which is by definition a projective smooth surface over \mathbb{Q} . Let $CH_0(X)$ be the Chow group of zero-cycles on X modulo rational equivalence. Fix a prime p and let

 $\rho_p: CH_0(X)\{p\} \to H^4_{\operatorname{cont}}(X, \mathbb{Z}_p(2))$

be the cycle map, where $CH_0(X)\{p\} \subset CH_0(X)$ is the subgroup of the *p*-primary torsion elements and the group on the right-hand side is the continuous *p*-adic etale cohomology group (cf. [J1]). The main result of the paper is the following.

THEOREM 0-1. Assume E has no complex multiplication over any finite extension of \mathbf{Q} and that N is square-free and $p \not\models 6N$. Then ρ_p is injective.

We remark that the assumption $p \not\neq 6$ is due to a certain technical problem in the *p*-adic Hodge theory (cf. Theorem 6-1). The assumption $p \not\neq N$ is more essential.

As a corollary of Theorem 0-1, one obtains the following.

THEOREM 0-2. Let the assumption be as Theorem 0-1. Then $CH_0(X)\{p\}$ is finite.

Indeed, take a proper smooth model \mathscr{X} of X over a nonempty open subscheme of Spec($\mathbb{Z}[1/p]$). The argument of the proof of [Sa3, (4-4)] shows that the image of ρ_p is contained in the image of the natural map

$$H^4_{\mathrm{et}}(\mathscr{X}, \mathbb{Z}_p(2)) \to H^4_{\mathrm{cont}}(X, \mathbb{Z}_p(2)),$$

which is a finitely generated \mathbb{Z}_p -module.

We have the following additional result.

THEOREM 0-3. There exists a finite set S of rational primes for which we have

$$CH_0(X)\{p\}=0 \quad \text{if } p \notin S.$$

(See the appendix for a more precise statement.)

Received 5 October 1994. Revision received 2 January 1996.