LEFSCHETZ CLASS OF ELLIPTIC PAIRS

STÉPHANE GUILLERMOU

CONTENTS

1.	Introduction	273
2.	Notation	276
3.	Review on elliptic pairs and integral transforms	278
4.	Lefschetz class of elliptic pairs	282
5.	Direct image theorem	285
	The product formula	294
	6.1. Microlocal product formula	294
	6.2. Transversal case	298
7.	Atiyah-Bott formula	300
	7.1. Local computation for a \mathcal{D} -module	301
	7.2. The real analytic case	303
8.	Parameterization of the Lefschetz class	304
	8.1. Lefschetz class of a \mathcal{D} -linear lifting	305
	8.2. Lefschetz class of a relative <i>D</i> -linear lifting	310
Re	References	

1. Introduction. In [10] P. Schapira and J.-P. Schneiders introduced the notion of elliptic pairs, generalizing the notion of ellipticity in the following way: An elliptic pair on a complex manifold X is the data of a real constructible sheaf F and a coherent \mathcal{D}_X -module \mathcal{M} which satisfy

 $SS(F) \cap \operatorname{char}(\mathscr{M}) \subset T_X^*X,$

where SS(F) stands for the microsupport of F (see [8]) and char(\mathcal{M}) for the characteristic variety of \mathcal{M} . For a morphism of complex manifolds $f: X \to Y$, they also introduced a notion of relative characteristic variety (denoted char_f(\mathcal{M})) and relative elliptic pair (substituting char_f(\mathcal{M}) for char(\mathcal{M}) in the preceding inclusion). Like elliptic systems, elliptic pairs satisfy an important finiteness property: they showed that the direct image of a relative elliptic pair, $\underline{f}_{!}(F \otimes \mathcal{M})$, is a coherent \mathcal{D}_{Y} -module. Defining the dual of an elliptic pair (F, \mathcal{M}) to be the pair of the duals of its components ($D'F, \underline{D}\mathcal{M}$), they proved the following duality result: duality commutes with direct image. They showed other results and among them a Künneth formula.

Received 14 February 1995.