HIGHER CHOW GROUPS AND THE HODGE-2-CONJECTURE

JAMES D. LEWIS

0. Introduction. Let X be a complex, quasi-projective variety of dimension n, with projective closure \overline{X} , and let $Y = \overline{X} - X$. Define $CH_{*+m}(-) = \bigoplus_{k \ge 0} CH_{k+m}(-)$, and $W_{-*}H_{*+m}(-) = \bigoplus_{i \ge 0} W_{-i}H_{i+m}(-)$, W_{-} weight filtration. In terms of describing the influence of mixed Hodge structures on Chow groups, there is the following schema below (with exact rows) (note: All homology is Borel-Moore, with Q-coefficients):

where $CH_{\dim Z+m-i}(Z,m) \stackrel{\text{def}}{=} CH^i(Z,m)$ are the higher Chow groups introduced by Bloch [B1], and where $CH_*(-,0) = CH_*(-)$ (as defined in [F]). The story for m = 0 was worked out in [L1]. We would like to speculate about a possible relationship between $W_{-*}H_{*+m}(X)$ and $CH_*(X,m)$ as a generalization of the case m = 0.

Let $H = H_{\mathbf{Q}}$ be a Hodge structure, with Hodge decomposition $H_{\mathbf{C}} = \bigoplus_{p,q} H^{p,q}$. We define Level $(H) = \max\{p - q | H^{p,q} \neq 0\}$ if $H \neq 0$ and Level $(H) = -\infty$ if H = 0. We also define $F_{\mathbf{Q}}^k H$ to be the maximum Hodge structure contained in $H_{\mathbf{Q}} \cap F^k H_{\mathbf{C}}$. As an initial guess based on earlier work [L1] and the above schema, it seems reasonable to expect that $Gr_{-k-\ell}F_{\mathbf{Q}}\{\bigoplus_{i\geq 2k+\ell} Gr_{-i}W.H_{2k+\ell+m}(X,\mathbf{Q})\}$ influences $CH_{k+m}(X,m)$ to some degree. The range of ℓ considered is $m \leq \ell \leq n-k$.

For k < m, we define Level $(CH^k(X, m)) = 0$. Otherwise, for $k \ge m$, we set Level $(CH^k(X, m)) :=$

$$\min\{r \ge 0 | CH^k(X, m) \to CH^k(X - Y, m) \text{ is zero,}$$

 $Y \hookrightarrow X$ closed, $\operatorname{codim}_X Y = k - r - m$.

Received 10 August 1995. Revision received 10 January 1996.

Author partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.