ON THE PRESCRIBED SCALAR CURVATURE PROBLEM ON 4-MANIFOLDS

MOHAMED BEN AYED, YANSONG CHEN, HICHEM CHTIOUI, and MOKHLES HAMMAMI

1. Introduction. Let $\left(M^{4}, g_{0}\right)$ be a compact 4-dimensional Riemannian manifold with a nonnegative scalar curvature $R_{g_{0}}$. Let K be a C^{3} positive function on M^{4}. The Kazdan-Warner problem [13] is the problem of finding suitable conditions on K such that K is the scalar curvature for some metric g on M^{4} conformally equivalent to g_{0}. The metric g then reads

$$
g=u^{2} g_{0}
$$

where u is a positive function on M^{4}, satisfying the partial differential equation

$$
(\mathbf{P}) \quad\left\{\begin{array}{l}
-L_{g_{0}} u=K(x) u^{3} \\
u>0
\end{array}\right.
$$

where $L_{g_{0}}=\Delta-(1 / 6) R_{g_{0}}$ is the conformal Laplacian of M^{4}.
This problem has been studied in various works previous to ours, in dimension 2 and 3 (see [10], [8], [4], [12], [21], [11], [7]) as well as in high dimensions under more stringent conditions [2], [9], [15]. However, a new phenomenon appears in dimension $n \geqslant 5$, due to the fact that the self-interaction of the functions failing the Palais-Smale condition dominates the interaction of two of those functions [2]. While in dimension 2, 3 the reverse happens. In dimension 4, we have a balance phenomenon; that is, we show, in this paper, that the selfinteraction and the interaction are of the same size.

This leads to an interesting new phenomenon, with a typical result. The expansion near infinity somewhat reminds us of the expansion of the Yamabe-type problem when several δ-functions (those failing the Palais-Smale condition) are involved. A natural Euler-Poincaré characteristic argument, very much different from the dimension 2 and 3 argument, allows us to derive the existence of a solution for this problem.

Another feature of the result is the fact that it extends to any compact Riemannian 4-dimensional manifold, without any restriction. It provides a topological condition under which K is the scalar-curvature of a metric conformal to the standard one. Examples of K 's satisfying such a condition are very easy to

Received 14 January 1995. Revision received 7 December 1995.

