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CONTINUITY OF RELATIVE HYPERBOLIC SPECTRAL
THEORY THROUGH METRIC DEGENERATION

JAY JORGENSON anp ROLF LUNDELIUS

§0. Introduction and background material. Let M denote a Riemann surface
of signature (g, n); hence M can be realized as a compact Riemann surface of
genus g with n points removed. A metric on M is determined by a positive (1, 1)
form p. All metrics on M are assumed to be compatible with the complex struc-
ture on the underlying compact algebraic curve M’. Associated to the metric u is
a positive Laplacian, which we denote by A, ,,. In a local coordinate z = x + iy
on M, if the metric u is given by

uz) = p“(z)% dz A dz, ©.1)

then the Laplacian A, ,, is given by
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The first Chern form ¢, (u) = c¢,(p) of the metric u is the (1, 1) defined locally by

¢y(w) = dd* log p

where

/ /__ 2
dd = 165— 19 dz A dZ.
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The associated Griffiths function G(u) = G(p) is the function defined by

G(pp = cy(w).

Classically, — G is the Gauss curvature of the metric u (see page 100 of [La]).
Assume for now that n =0, so M is a compact Riemann surface of genus g.

Since M is compact, it is classical that the action of the Laplacian A, ), on the

space of smooth functions has a discrete spectrum with positive eigenvalues. The
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