THE LAPLACIAN ON RAPIDLY BRANCHING TREES

KOJI FUJIWARA

1. Introduction and the statement of main results. Let M be a complete Riemannian manifold and Δ the Laplacian on M. Fix a point $p \in M$ and write $K(r) = \sup\{K(x,\pi)|d(p,x) \ge r\}$ where π is a two plane in T_xM and K denotes the sectional curvature. H. Donnelly and P. Li showed the following [DL].

Theorem (Donnelly, Li). Let M be a complete simply connected negatively curved Riemannian manifold. If $\lim_{r\to\infty}K(r)=-\infty$, then Δ has no essential spectrum.

In this article we show an analogous theorem for graphs.

Let G = G(V, E) be a locally finite, infinite graph with the set of vertices V and the set of directed edges E. The Laplacian $\Delta = \Delta_G$ is given by

$$\Delta f(x) = \frac{1}{m(x)} \sum_{x \sim y} (f(x) - f(y)),$$

where $x \sim y$ means x and y are joined by an edge and m(x) is the multiplicity at x defined by $\sharp\{y|x\sim y\}$. The domain of Δ , $D(\Delta)$, is $L^2(V)$ with its natural L^2 -structure: $L^2(V)=\{f\colon V\to \mathbb{R}\mid (f,f)=\sum_{x\in V}m(x)f^2(x)<\infty\}, (f,g)=\sum_{x\in V}m(x)f(x)g(x).$ $L^2(V)=\overline{C_0(G)}$, where $C_0(G)$ is the set of functions on V with a finite support. We sometimes write $L^2(G)$ instead of $L^2(V)$. Put $L^2(E)=\{\phi\colon E\to \mathbb{R}\mid \phi([x,y])=-\phi([y,x]), (\phi,\phi)=1/2\sum_{e\in E}\phi^2(e)<\infty\}$ and $(\phi,\psi)=1/2\sum_{e\in E}\phi(e)\psi(e)$, where [x,y] is an edge from x to y. The coboundary operator $L^2(V)\to L^2(E)$ is df([x,y])=f(x)-f(y) and we have $\Delta f=\delta df$, $(\Delta f,g)=(df,dg)$ for $f,g\in L^2(V)$, where δ is the adjoint operator of d. Δ is a selfadjoint operator with $0\leqslant \Delta \leqslant 2$.

Let S be a finite set of vertices. Put $\partial S = \{(x,y) | x \notin S, y \in S, x \sim y\}$, $L(\partial S) = \sharp \partial S$, and $A(S) = \sum_{x \in S} m(x)$. The isoperimetric constant is given by $\alpha(G) = \inf_S \{L(\partial S)/A(S)\}$. The isoperimetric constant at infinity, α_{∞} , is defined by $\alpha_{\infty} = \lim_K \alpha(G - K)$, where K runs over all finite subsets. We have $0 \le \alpha \le \alpha_{\infty} \le 1$. We denote the spectrum of Δ by $\operatorname{Spec}(\Delta)$ and the essential spectrum by $\operatorname{Ess}(\Delta)$.

THEOREM 1. $\alpha_{\infty} = 1$ if and only if $Ess(\Delta) = \{1\}$.

Received 6 October 1994. Revision received 1 August 1995.