ON THE LIEB-THIRRING ESTIMATES FOR THE PAULI OPERATOR

ALEXANDER V. SOBOLEV

1. Introduction. The aim of this paper is to establish some spectral properties of the Pauli operator, that is, of the operator describing the motion of a particle with spin in a magnetic field. We confine ourselves to the case when the spin is allowed to take one of the values +1/2 or -1/2. The operator acts in $L^2(\mathbb{R}^d) \otimes$ \mathbb{C}^2 with d = 2 or d = 3 and has the form

$$H_{\text{Pauli}}^{(d)} = H_{\mathbf{a}}^{(d)} \mathbb{I} - \Sigma \cdot \mathbf{B}, \qquad \mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

where $H_{\mathbf{a}}^{(d)} = (-i\nabla - \mathbf{a})^2$ is the usual spinless Schrödinger operator with the magnetic vector-potential $\mathbf{a} = \{a_1, \ldots, a_d\}, \mathbf{B} = \nabla \times \mathbf{a}$ is the field and Σ stands for the vector $\sigma_1, \sigma_2, \sigma_3$ of 2 × 2 Pauli matrices (see [4]). Suppose that the field **B** is pointed along the x₃-axis, i.e., $\mathbf{a} = (a_1, a_2, 0)$ with $a_k = a_k(x_1, x_2)$ (which is always true for d = 2). In this case, $\mathbf{B} = (0, 0, B), B = \partial_1 a_2 - \partial_2 a_1$, and $H_{\text{Pauli}}^{(d)}$ looks especially simple:

$$H_{\text{Pauli}}^{(2)} = \begin{pmatrix} A_{+} & 0\\ 0 & A_{-} \end{pmatrix}, \qquad A_{\pm} = H_{\mathbf{a}}^{(2)} \mp B, \qquad (1.1)$$

$$H_{\text{Pauli}}^{(3)} = H_{\text{Pauli}}^{(2)} + \begin{pmatrix} -\partial_3^2 & 0\\ 0 & -\partial_3^2 \end{pmatrix}.$$
 (1.2)

Although this operator does not seem to be nonnegative, the entries A_{\pm} can be rewritten as $A_{\pm} = Q_{\pm}^* Q_{\pm}$ with the operators

$$Q_{\pm} = \Pi_1 \pm i \Pi_2, \qquad \Pi_k = -i \partial_k - a_k, \ k = 1, 2,$$
 (1.3)

which allows one to define $H_{\text{Pauli}}^{(2)}$ as a nonnegative selfadjoint operator (see Section 2 below). A remarkable property of $H_{\text{Pauli}}^{(2)}$ is that the point $\lambda = 0$ belongs to its spectrum. This assertion was proved under fairly broad conditions on the magnetic field B (see [1], [8] and also [4], [5], [10]). If the operator (1.1) or (1.2) is per-

Received 23 March 1995. Revision received 22 June 1995. Author supported by EPSRC under grant B/94/AF/1793.