MULTIPLICITIES FORMULA FOR GEOMETRIC QUANTIZATION, PART I

MICHELE VERGNE

1. Introduction. Let G be a compact Lie group with Lie algebra g acting on a compact symplectic manifold M by a Hamiltonian action. If $X \in \mathfrak{g}$, we denote by X_{M} the vector field on M induced by the action of G. We denote by σ the symplectic form on M and by $\mu: M \rightarrow \mathrm{~g}^{*}$ the moment map. To simplify, we will assume in this article that M has a G-invariant spin structure. We will show in the appendix how to remove this assumption.

Let us assume that M is prequantized, and let \mathscr{L} be the Kostant-Souriau line bundle on M. We denote by $R(G)$ the ring of virtual finite-dimensional representations of G. An element of $R(G)$ is thus a difference of two finite-dimensional representations of G. We associate to (M, \mathscr{L}) a virtual representation $Q(M, \mathscr{L}) \in$ $R(G)$ of G constructed as follows: Choose a G-invariant Riemannian structure on M. Let $\mathscr{S}^{ \pm}$be the half-spin bundles over M determined by the spin structure and the symplectic orientation of M. Let $\Gamma\left(M, \mathscr{S}^{ \pm} \otimes \mathscr{L}\right)$ be the spaces of smooth sections of $\mathscr{S}^{ \pm} \otimes \mathscr{L}$. Consider the twisted Dirac operator

$$
D_{\mathscr{L}}^{+}: \Gamma\left(M, \mathscr{S}^{+} \otimes \mathscr{L}\right) \rightarrow \Gamma\left(M, \mathscr{S}^{-} \otimes \mathscr{L}\right)
$$

This is an elliptic operator commuting with the action of G. We define a virtual representation $Q(M, \mathscr{L})$ of G by the formula:

$$
Q(M, \mathscr{L})=(-1)^{\operatorname{dim} M / 2}\left(\left[\operatorname{Ker} D_{\mathscr{L}}^{+}\right]-\left[\operatorname{Coker} D_{\mathscr{L}}^{+}\right]\right)
$$

The virtual representation $Q(M, \mathscr{L})$ so obtained is independent of the choice of the Riemannian structure on M. If M and \mathscr{L} have G-invariant complex structure, then $Q(M, \mathscr{L})$ (apart from a shift of parameters) is the direct image of the sheaf $\mathcal{O}(\mathscr{L})$ of holomorphic sections of \mathscr{L} by the map $M \rightarrow$ point. In the differentiable category, we employ as in Atiyah-Hirzebruch [3] the Dirac operator to define the direct image $Q(M, \mathscr{L}) \in R(G)=K_{G}($ point $)$ of $\mathscr{L} \in K_{G}(M)$. If the group G is trivial, then $Q(M, \mathscr{L}) \in \mathbb{Z}$ is the index of the operator $D_{\mathscr{L}}^{+}$. We call this number the Riemann-Roch number of (M, \mathscr{L}).

We are interested in describing the decomposition of $Q(M, \mathscr{L})$ in irreducible representations of G. Let $G=T$ be a torus. Let $P \subset i t^{*}$ be the lattice of weights of T. We have a decomposition

$$
Q(M, \mathscr{L})=\sum_{\xi \in i P} n(\xi, M, \mathscr{L}) e_{i \xi}
$$

Received 17 October 1994. Revision received 16 May 1995.

