MULTIPLICITIES FORMULA FOR GEOMETRIC QUANTIZATION, PART I

MICHELE VERGNE

1. Introduction. Let G be a compact Lie group with Lie algebra g acting on a compact symplectic manifold M by a Hamiltonian action. If $X \in g$, we denote by X_M the vector field on M induced by the action of G. We denote by σ the symplectic form on M and by $\mu: M \to g^*$ the moment map. To simplify, we will assume in this article that M has a G-invariant spin structure. We will show in the appendix how to remove this assumption.

Let us assume that M is prequantized, and let \mathscr{L} be the Kostant-Souriau line bundle on M. We denote by R(G) the ring of virtual finite-dimensional representations of G. An element of R(G) is thus a difference of two finite-dimensional representations of G. We associate to (M, \mathscr{L}) a virtual representation $Q(M, \mathscr{L}) \in$ R(G) of G constructed as follows: Choose a G-invariant Riemannian structure on M. Let \mathscr{S}^{\pm} be the half-spin bundles over M determined by the spin structure and the symplectic orientation of M. Let $\Gamma(M, \mathscr{S}^{\pm} \otimes \mathscr{L})$ be the spaces of smooth sections of $\mathscr{S}^{\pm} \otimes \mathscr{L}$. Consider the twisted Dirac operator

$$D_{\mathscr{L}}^+: \Gamma(M, \mathscr{S}^+ \otimes \mathscr{L}) \to \Gamma(M, \mathscr{S}^- \otimes \mathscr{L}).$$

This is an elliptic operator commuting with the action of G. We define a virtual representation $Q(M, \mathcal{L})$ of G by the formula:

$$Q(M, \mathscr{L}) = (-1)^{\dim M/2} ([\operatorname{Ker} D_{\mathscr{L}}^+] - [\operatorname{Coker} D_{\mathscr{L}}^+]).$$

The virtual representation $Q(M, \mathscr{L})$ so obtained is independent of the choice of the Riemannian structure on M. If M and \mathscr{L} have G-invariant complex structure, then $Q(M, \mathscr{L})$ (apart from a shift of parameters) is the direct image of the sheaf $\mathscr{O}(\mathscr{L})$ of holomorphic sections of \mathscr{L} by the map $M \to point$. In the differentiable category, we employ as in Atiyah-Hirzebruch [3] the Dirac operator to define the direct image $Q(M, \mathscr{L}) \in R(G) = K_G(point)$ of $\mathscr{L} \in K_G(M)$. If the group G is trivial, then $Q(M, \mathscr{L}) \in \mathbb{Z}$ is the index of the operator $D_{\mathscr{L}}^+$. We call this number the Riemann-Roch number of (M, \mathscr{L}) .

We are interested in describing the decomposition of $Q(M, \mathcal{L})$ in irreducible representations of G. Let G = T be a torus. Let $P \subset it^*$ be the lattice of weights of T. We have a decomposition

$$Q(M,\,\mathscr{L}) = \sum_{\xi \in iP} n(\xi,\,M,\,\mathscr{L}) e_{i\xi},$$

Received 17 October 1994. Revision received 16 May 1995.