THE OSCILLATOR CORRESPONDENCE OF ORBITAL INTEGRALS, FOR PAIRS OF TYPE ONE IN THE STABLE RANGE

ANDRZEJ DASZKIEWICZ AND TOMASZ PRZEBINDA

1. Introduction. Let G, $G' \subseteq Sp(W)$ be a reductive dual pair of type I; see [H2]. Thus, there is a division algebra $\mathbf{D} = (\mathbf{R}, \mathbf{C}, \mathbf{H})$ with an involution over **R**, two finite-dimensional vector spaces over **D**, V and V' equipped with nondegenerate forms (,) and (,)', respectively—one hermitian and the other skewhermitian. The groups G, G' are the isometry groups of the forms (,), (,)', respectively. Let W denote the vector space W = Hom(V', V). A symplectic form on W is defined by

(1.1)
$$\langle w, w' \rangle = \operatorname{tr}_{\mathbf{D}/\mathbf{R}}(ww'^*) \quad (w, w' \in W),$$

where the map $\operatorname{Hom}(V', V) \ni w \to w^* \in \operatorname{Hom}(V, V')$ is defined by

(1.2)
$$(w(v'), v) = (v', w^*(v))' \qquad (w \in W, v \in V, v' \in V').$$

The groups G and G' act on W via postmultiplication and premultiplication by the inverse, respectively. These actions embed G and G' into the symplectic group Sp(W).

Let \widetilde{Sp} denote the metaplectic group, and let \widetilde{G} , \widetilde{G}' be the preimages of G, G' under the covering map $\widetilde{Sp} \to Sp$. The duality theorem of Howe [H3] states that there is a bijection $\Pi \leftrightarrow \Pi'$ between certain irreducible admissible representations of \tilde{G} and \tilde{G}' .

Recall the unnormalized moment maps

(1.3)
$$\tau_{\mathfrak{g}}: W \ni w \to ww^* \in \mathfrak{g}, \qquad \tau_{\mathfrak{g}'}: W \ni w \to w^* w \in \mathfrak{g}'.$$

In the early 1980s, Howe conjectured that the wave-front sets of Π and Π' are related to the geometry of moment maps in some nice way.

CONJECTURE (Howe). For a generic pair (Π, Π') occurring in Howe's correspondence,

(1.4)
$$WF(\Pi') = \tau_{\mathfrak{a}'}(\tau_{\mathfrak{a}}^{-1}(WF(\Pi))).$$

Received 4 January 1995. Revision received 12 April 1995.

Przebinda's research was partially supported by National Science Foundation grant DMS 9204488.