ZEROS OF PRINCIPAL L-FUNCTIONS AND RANDOM MATRIX THEORY

ZEÉV RUDNICK AND PETER SARNAK

1. Introduction. Our goal in this paper is to study the distribution of zeros of the Riemann zeta function as well as of more general L-functions.¹ According to conjectures of Langlands [14], the most general L-function is that attached to an automorphic representation of GL_N over a number field, and these in turn should be expressible as products of the "standard" L-functions $L(s, \pi)$ attached to cuspidal automorphic representations of GL_m over the rationals. Such L-functions are therefore believed to be the building blocks for general L-functions, and we call them (principal) primitive L-functions of degree m. (They do not factor as products of such L-functions.)² For m = 1 these are the Riemann zeta function $\zeta(s)$ and Dirichlet L-functions $L(s, \chi)$ with χ primitive. For m = 2 the analytic properties and functional equation of such L-functions were investigated by Hecke and Maass, and for $m \ge 3$ by Godement and Jacquet [5]. We are interested in the fine structure of the distribution of the nontrivial zeros of such primitive $L(s, \pi)$. Let $\rho^{(\pi)} = (1/2) + i\gamma^{(\pi)}$ denote these zeros. To motivate the formulation of our results, we begin by assuming the Riemann hypothesis (RH) for $L(s, \pi)$, that is, that $\gamma^{(\pi)} \in \mathbf{R}$. We order the $\gamma^{(\pi)}$'s (with multiplicities)

$$\cdots \leqslant \gamma_{-2}^{(n)} \leqslant \gamma_{-1}^{(n)} < 0 \leqslant \gamma_1^{(n)} \leqslant \gamma_2^{(n)} \cdots$$

The number of γ 's in an interval [T, T + 1] is asymptotic to $(m/2\pi) \log T$ as $T \to \infty$ (see (2.11)). It follows that the numbers $\tilde{\gamma}_j^{(\pi)} = (m/2\pi)\gamma_j \log|\gamma_j|$ have unit mean spacing. The problem is to understand the statistical nature of the sequence $\tilde{\gamma}_j^{(\pi)}$: Do they come down randomly (Poisson process) or do they follow a more revealing distribution?

In the case of the Riemann zeta function, following the original calculation by Montgomery [20] of the pair correlation (see below) and the extensive numerical calculations of Odlyzko [21], [22], it is now well accepted (but far from proven) that the consecutive spacings follow the Gaussian unitary ensemble (GUE) distribution from random matrix theory. That is, if $\delta_n = \tilde{\gamma}_{n+1} - \tilde{\gamma}_n$ are the normalized

¹ The reader interested only in the Riemann zeta function $\zeta(s)$ should read the paper with $L(s, \pi)$ replaced by $\zeta(s)$ and m = 1 everywhere, in which case the results were announced in [26].

² It is quite plausible that these coincide with the primitive Dirichlet series introduced by Selberg [29] or the "arithmetic Dirichlet series" in Piatetski-Shapiro [24].

Received 16 September 1994. Revision received 29 June 1995.

Authors partially supported by National Science Foundation grants DMS-9400163 and DMS-9102082.