A SUFFICIENT CONDITION FOR INVARIANCE OF ESSENTIAL COMPONENTS

SRIHARI GOVINDAN AND ROBERT WILSON

Introduction. Key advances in the study of Nash equilibria of finite games are the articles by Kohlberg and Mertens [1] and Mertens [3], [4] that define stable sets of equilibria and study their properties. Central to their results is the topological-structure theorem and its corollary establishing existence [1, Theorem 1 and Proposition 1]. They show that each game has a component of its Nash equilibria with the property that every perturbation of the normal form of every equivalent game has a Nash equilibrium close to this component. A component with this property is called invariant. Two games are equivalent if they have the same "reduced" normal form, in the sense that no pure strategy's payoffs are a convex combination of the payoffs from other pure strategies of the same player.

Checking directly that a component is invariant presents severe difficulties. Our current contribution is to provide a sufficient condition for invariance. We show that a component is invariant if the projection from its neighborhood in the Nash graph to the neighborhood of the game is an essential map in the homological sense. A second motive is to lay foundations for a study of stability based on payoff perturbations, which is sometimes a more powerful means of equilibrium selection than the usual approach based on strategy perturbations.¹

Formulation and theorem. We consider finite normal-form games with a fixed set N of players. For each player $n \in N$, let S_n be the finite set of feasible pure strategies in the game, and let Σ_n be the space of mixed strategies, represented as the simplex of probability distributions over the pure strategies. Specify $S \equiv \prod_N S_n$ and $\Sigma \equiv \prod_N \Sigma_n$. Each game G is identified by its feasible strategies and the payoffs $(G_n(s))_{n \in N}$ to the players from each profile $s = (s_n)_{n \in N} \in S$ of the players' pure strategies. Thus, for each configuration of feasible strategies, interpret the space of games as $\mathscr{G} = \Re^{N \times S}$. A player v's payoff from a profile $\sigma \in \Sigma$ of mixed strategies is the expected payoff: $G_v(\sigma) = \sum_s G_v(s) \prod_N \sigma_n(s_n)$.

A profile σ of mixed strategies is a Nash equilibrium if each player v's strategy is an optimal reply to the others; i.e., $G_{\nu}(\sigma) = \max_{\Sigma_{\nu}} G_{\nu}(\sigma)$, where the maximization is over the reply by v to other players' strategies. Let E be the graph of the correspondence $\mathcal{N}: \mathcal{G} \to \Sigma$ that maps each game to the set of its Nash equilibria;

Received 7 July 1995.

¹McLennan [5] shows that a component that is essential with respect to perturbations of players' best-reply correspondences is also invariant with respect to duplication of *pure* strategies.