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FUNCTIONS ON HYPERBOLIC RIEMANN SURFACES

OF FINITE VOLUME

JAY JORGENSON AnD ROLF LUNDELIUS

0. Introduction and notation. Let M denote a not necessarily connected
Riemann surface of signature (g, n). It is important that we consider surfaces which
are not necessarily connected. Unless explicitly stated, surfaces need not be con-
nected. The genus g is defined to be the sum of the genera of the components, and
the number of cusps n is the sum of the number of cusps on each component. Let
too(M) be the number of connected components of M.
A metric on M is determined by a smooth, positive (1, 1) form #u, and all

metrics on M are assumed to be complete and to be compatible with the complex
structure on the underlying algebraic curve. Associated to the metric #M is a
positive Laplacian, which we denote by A,u. In a local coordinate z x + iy on
M, one can write the metric #u and the corresponding Laplacian A,u as

l(Z) p-(z)-dz ^ dz

2
and Au,M --4p(z)tzc3

Assume for now that n 0, so M is compact (again, not necessarily connected).
Since M is compact, it is classical that the action of the Laplacian A,u on the
space of smooth functions has a discrete spectrum with nonnegative eigenvalues.
The multiplicity of the zero eigenvalue is equal to the number of connected com-
ponents of M. The nonzero eigenvalues will be expressed by the sequence

0 < 2,.(M) < 22,.(M) <’".

Denote the associated set of unit L2-norm eigenfunctions of A,,u by {,,,u(M)},
so this set of eigenfunctions forms a complete orthonormal basis for the Hilbert
space of L2 functions on M. Recall that the differential equation satisfied by the
eigenfunctions is

A,,tkn,,(M 2n,,(M)kn,,(M O. (0.1)
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