SHARP INEQUALITIES FOR MARTINGALES WITH APPLICATIONS TO THE BEURLING-AHLFORS AND RIESZ TRANSFORMS

RODRIGO BAÑUELOS AND GANG WANG

§0. Introduction. The purpose of this paper is to prove some sharp inequalities for martingales, and from these obtain new information on the L^p -constants for Riesz transforms, composition of two Riesz transforms and for the Beurling-Ahlfors operator in the complex plane \mathbb{C} . The latter operator is the 2-dimensional analogue of the classical Hilbert transform, and it plays a fundamental role (e.g., see [1], [2], [11], [12]) in the study of quasiconformal mappings, partial differential equations, complex analysis, and, as shown recently by Iwaniec and Martin ([13], [14]) in the study of certain singular integrals in \mathbb{C}^n and on differential forms with even kernels. We will first describe the martingale results.

Let (Ω, \mathscr{F}, P) be a probability space and $\mathscr{F} = \{\mathscr{F}_t\}_{t\geq 0}$ be a nondecreasing family of sub- σ -fields of \mathscr{F}_{∞} . For any two real-valued martingales X and Y with respect to \mathscr{F} , we say that X is orthogonal to Y if the quadratic covariation between X and Y, denoted by $\langle X, Y \rangle_t$, is 0 for all $t \geq 0$. Motivated by Burkholder ([6], [7]) we shall also say that Y is differentially subordinate to X if the quadratic variation of X minus that of $Y, \langle X \rangle_t - \langle Y \rangle_t$, is a nondecreasing function of t for $t \geq 0$. Unless otherwise indicated, we also assume throughout the paper that $X_0 = Y_0 = 0$. The same definition for differential subordination applies if both X and Y are H-valued martingales where H is a separable Hilbert space over \mathbb{R} , or if one martingale is H-valued and the other is real-valued. The constants that we obtain do not depend on the Hilbert space, so we could just as well assume $\mathbb{H} = \mathbb{R}^d$, for any positive integer d. We say that two \mathbb{R}^d -valued martingales are orthogonal if $\langle X_i, Y_j \rangle = 0$ for all $1 \leq i, j \leq d$, where (X_1, \ldots, X_d) , (Y_1, \ldots, Y_d) are coordinates of X and Y.

For any 1 , we define

$$p^* = \max\left\{p, \frac{p}{p-1}\right\},$$

$$C_p = \begin{cases} \tan\left(\frac{\pi}{2p}\right), & 1$$

Received 11 July 1994. Revision received 20 April 1995. Bañuelos supported in part by the National Science Foundation.

Wang supported in part by a Summer Research Grant of DePaul University.