THE MULTIPLICATIVE ANOMALY FOR DETERMINANTS OF ELLIPTIC OPERATORS

KATE OKIKIOLU

Introduction. Let M be a compact n-dimensional manifold without boundary and let E be a complex vector bundle over M of rank N. Write $C^{\infty}(E)$ for the smooth sections of E. Suppose B: $C^{\infty}(E) \to C^{\infty}(E)$ is a pseudodifferential operator which is polyhomogeneous of degree β , i.e., (i) and (ii) below are satisfied.

(i) In any local coordinates over which E is trivial,

(0.1)
$$\sigma(B)(x,\,\xi) \sim \sum_{j=0}^{\infty} b_j(x,\,\xi),$$

where $b_i(x, \xi)$ is an $N \times N$ -matrix-valued function which is homogeneous in ξ of degree $\beta - i$.

(ii) There exist local coordinates in which $b_0(x, \xi)$ is not identically zero.

Write $\sigma_0(B)$ for the principal symbol of B, which is a section of the bundle End(E) over the manifold $T^*(M) \setminus 0$. We say that B has principal angle θ , if $\sigma_0(B)(x,\xi)$ has no eigenvalue on the ray $R_\theta = \{re^{i\theta} : r \ge 0\}$ for any $(x,\xi) \in T^*(M) \setminus 0$; this is clearly stronger than being elliptic.

Let B be a polyhomogeneous pseudodifferential operator of degree $\beta > 0$ on E and suppose that B has principal angle θ . Then B has discrete spectrum, and each point λ in the spectrum is an eigenvalue whose space of generalized eigenfunctions (functions annihilated by some power of $(\lambda I - B)$) is finite-dimensional. Let $\lambda_1, \lambda_2, \lambda_3, \ldots$ be the list of the nonzero spectrum of B repeated according to multiplicity. Then

converges for $\Re s < -n/\beta$. Here,

(0.3)
$$\lambda^s = |\lambda|^s e^{is \arg \lambda}, \quad \theta \leq \arg \lambda < \theta + 2\pi.$$

By Lidskii's theorem and [18], Z(s) can be meromorphically extended to all complex s, and is regular at s = 0. The zeta-regularized determinant det' B is defined by

$$\log \det' B = Z'(0).$$

Received 12 September 1994. Revision received 21 February 1995.