SINGULAR SYMMETRIC MATRICES

ALEX ESKIN AND YONATAN R. KATZNELSON

1. Introduction. Let $\mathcal{S}_{n,r}$ be the affine variety of $n \times n$ symmetric matrices of rank r;

$$\mathscr{S}_{n,r} = \{ A \in \mathbb{C}^{n \times n} : A = {}^{\mathrm{t}}A, \operatorname{rank}(A) = r \}.$$

We denote by $\mathcal{S}_{n,r}(\mathbb{Z})$ the integral points of $\mathcal{S}_{n,r}$. Our purpose here is to analyze the counting function

$$N(T, n, r) = \#\{A \in \mathcal{S}_{n,r}(\mathbb{Z}): \|A\| < T\}.$$

||A|| denotes the standard Euclidean norm of a matrix in the space $\mathbb{R}^{n \times n}$; $||A||^2 = \sum_{i,j} a_{ij}^2$.

There is a natural correspondence between symmetric integral matrices of rank 2 and integral quadratic forms that are decomposable over the field \mathbb{Q} of rational numbers. In this context Schmidt [11] proves that

(1)
$$N(T, n, 2) = \alpha(n) T^n \log T + \begin{cases} O(T^3 \log^{1/2} T) : n = 3 \\ O(T^n) : n \ge 4, \end{cases}$$

with $\alpha(n) > 0$. In his work, Schmidt considers the slightly different norm $||A||_1 = \max_{i,j} |a_{ij}|$. We will give an indication of his argument a little further on.

The principle results here are the following two theorems.

THEOREM 1.1. For $n \ge 4$

(2)
$$N(T, n, n-1) = \frac{n(n-1)\mathscr{V}(n)\mathscr{V}(n(n-1)/2)}{2^{2+(n-1)(n-2)/4}\zeta(n)} T^{n(n-1)/2} \log T + O(T^{n(n-1)/2}(\log T)^{1-\varepsilon(n)}),$$

as T tends to infinity. Here $\varepsilon(n) = (n-2)/(n-2+(n-3)(n^2+2)/3)$, which is strictly positive for $n \ge 3$.

Here and throughout the paper, $\mathcal{V}(k)$ is the volume of the unit ball in k dimensions, and $\zeta(k)$ is the Riemann zeta function. The notations " $f(x) \ll g(x)$ " and

Received 26 May 1993. Revision received 13 February 1995.

Eskin supported in part by a fellowship from the Sloan foundation and Department of Education grant no. P200A10022.A01.