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THE BEST CONSTANT PROBLEM IN THE
SOBOLEV EMBEDDING THEOREM FOR
COMPLETE RIEMANNIAN MANIFOLDS

EMMANUEL HEBEY ArqD MICHEL VAUGON

I. Introduction and results. Let (M, g) be a smooth Riemannian manifold
without boundary of dimension n > 3. It was shown recently in Hebey-Vaugon
1-213 that when M is compact, there exists a positive constant C C(M) such
that, for any u H(M),

(fM )(,-2)/, 4 fM ulul/"-) dr(g) < n(n 2)09,2/" IVul= dr(g) + C u:z dr(g) (S)

where o9, is the volume of the standard unit sphere of lR"+1. Here, H(M) is the
completion of C(M) with respect to the standard norm

Ilull N/flVul2 dv(g) + fMug dv(g),

and the embedding of HZ(M) in L2n/(n-2)(M) is critical from the Sobolev
viewpoint.
Note that since 4/(n(n- 2),/") is the best constant for which the Sobolev

inequalities related to the embedding H L2n/("-2) hold, (S) is an optimal
inequality. Namely, let (M, O) be a smooth Riemannian manifold of dimension
n > 3 (not necessarily compact), and let D(M) be the space of smooth functions
with compact support in M. It is possible to prove that, if there exist constants A
and C such that for any u D(M)

lul2"/"-2) dr(g) < A IVul z dr(g) + C uz dr(g),

then A > S, 4/(n(n 2)o9,Z/"). The argument is purely local. (See Appendix 2).
Now, a natural question is to wonder if (S) still holds on complete manifolds.

This is a more delicate question than in the compact case. For instance, H(M) is
not any more necessarily embedded in LZn/(n-Z)(M). Anyway, it has been proved
in Hebey [19] that if the Ricci curvature of M is bounded below and if the
injectivity radius of M is positive, then, for any > 0, there exists a constant

C C(e, M) such that for any u H(M)
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