DISTRIBUTION OF RESONANCES FOR THE NEUMANN PROBLEM IN LINEAR ELASTICITY OUTSIDE A STRICTLY CONVEX BODY

P. STEFANOV AND G. VODEV

1. Introduction. Let \mathcal{O} be a strictly convex compact set in \mathbb{R}^3 with C^{∞} -smooth boundary Γ and denote by $\Omega = \mathbb{R}^3 \setminus \mathcal{O}$ the exterior domain. Denote by Δ_e the elasticity operator, which is a 3 × 3 matrix-valued differential operator defined by

$$\Delta_e v = \mu_0 \Delta v + (\lambda_0 + \mu_0) \nabla (\nabla \cdot v),$$

 $v = {}^{t}(v_1, v_2, v_3)$. Here λ_0, μ_0 are the Lamé constants and we assume that

$$\mu_0 > 0, \quad 3\lambda_0 + 2\mu_0 > 0. \tag{1.1}$$

The Neumann boundary conditions for Δ_e are of the form

$$\sum_{j=1}^{3} \sigma_{ij}(v) v_j|_{\Gamma} = 0, \quad i = 1, 2, 3,$$
(1.2)

where $\sigma_{ij}(v) = \lambda_0 \nabla \cdot v \delta_{ij} + \mu_0 (\partial v_i / \partial x_j + \partial v_j / \partial x_i)$ is the stress tensor, and v is the outer normal to $\Gamma = \partial \Omega$. It is known that $-\Delta_e$, acting on functions $v \in C^{\infty}_{\text{comp}}(\overline{\Omega}; \mathbb{C}^3)$ satisfying (1.2), can be extended to a selfadjoint operator on $L^2(\Omega; \mathbb{C}^3)$ which will be denoted by L. The operator L is nonnegative and has no point spectrum. Then the cut-off resolvent $R_{\chi}(\lambda) = \chi (L - \lambda^2)^{-1} \chi, \chi \in C^{\infty}_0$ being a cut-off function equal to 1 near Γ , can be extended as a meromorphic function from Im $\lambda < 0$ to the whole complex plane C with possible poles in Im $\lambda > 0$ (see, e.g., [Va], [Vo]). The poles of $R_{\chi}(\lambda)$ are called *resonances* (known also as scattering poles).

There are a lot of works dealing with resonances for the Dirichlet or Neumann Laplacian in an exterior domain. It follows from [MS1] and [MS2] that if there are no trapped rays, the singularities of the solution of the wave equation escape to infinity. Thus the method in [LP2] (see also [Va]) gives that, for nontrapping obstacles (and in particular for strictly convex ones), for any $C_1 > 0$ there exists $C_2 > 0$ (depending on C_1) so that all the resonances are above the curve Im $\lambda = C_1 \ln |\lambda| - C_2$. In the case of analytic boundary this was improved in [BLR] to a cubic curve Im $\lambda = C_1 |\lambda|^{1/3} - C_2$ with some constants $C_1, C_2 > 0$ which can be calculated explicitly. Recently, it was shown in [SZ] and [HL] that this is the

Both authors partly supported by the Bulgarian Science Foundation, grant MM 401/94.

Received 18 March 1994. Revision received 4 November 1994.