DISTRIBUTION OF RESONANCES FOR THE NEUMANN PROBLEM IN LINEAR ELASTICITY OUTSIDE A STRICTLY CONVEX BODY

P. STEFANOV and G. VODEV

1. Introduction. Let \mathcal{O} be a strictly convex compact set in \mathbf{R}^{3} with C^{∞}-smooth boundary Γ and denote by $\Omega=\mathbf{R}^{3} \backslash \mathcal{O}$ the exterior domain. Denote by Δ_{e} the elasticity operator, which is a 3×3 matrix-valued differential operator defined by

$$
\Delta_{e} v=\mu_{0} \Delta v+\left(\lambda_{0}+\mu_{0}\right) \nabla(\nabla \cdot v),
$$

$v={ }^{t}\left(v_{1}, v_{2}, v_{3}\right)$. Here λ_{0}, μ_{0} are the Lamé constants and we assume that

$$
\begin{equation*}
\mu_{0}>0, \quad 3 \lambda_{0}+2 \mu_{0}>0 . \tag{1.1}
\end{equation*}
$$

The Neumann boundary conditions for Δ_{e} are of the form

$$
\begin{equation*}
\left.\sum_{j=1}^{3} \sigma_{i j}(v) v_{j}\right|_{\Gamma}=0, \quad i=1,2,3 \tag{1.2}
\end{equation*}
$$

where $\sigma_{i j}(v)=\lambda_{0} \nabla \cdot v \delta_{i j}+\mu_{0}\left(\partial v_{i} / \partial x_{j}+\partial v_{j} / \partial x_{i}\right)$ is the stress tensor, and v is the outer normal to $\Gamma=\partial \Omega$. It is known that $-\Delta_{e}$, acting on functions $v \in C_{\text {comp }}^{\infty}\left(\bar{\Omega} ; \mathbf{C}^{3}\right)$ satisfying (1.2), can be extended to a selfadjoint operator on $L^{2}\left(\Omega ; \mathbf{C}^{3}\right)$ which will be denoted by L. The operator L is nonnegative and has no point spectrum. Then the cut-off resolvent $R_{\chi}(\lambda)=\chi\left(L-\lambda^{2}\right)^{-1} \chi, \chi \in C_{0}^{\infty}$ being a cut-off function equal to 1 near Γ, can be extended as a meromorphic function from $\operatorname{Im} \lambda<0$ to the whole complex plane \mathbf{C} with possible poles in $\operatorname{Im} \lambda>0$ (see, e.g., [Va], [Vo]). The poles of $R_{\chi}(\lambda)$ are called resonances (known also as scattering poles).

There are a lot of works dealing with resonances for the Dirichlet or Neumann Laplacian in an exterior domain. It follows from [MS1] and [MS2] that if there are no trapped rays, the singularities of the solution of the wave equation escape to infinity. Thus the method in [LP2] (see also [Va]) gives that, for nontrapping obstacles (and in particular for strictly convex ones), for any $C_{1}>0$ there exists $C_{2}>0$ (depending on C_{1}) so that all the resonances are above the curve $\operatorname{Im} \lambda=$ $C_{1} \ln |\lambda|-C_{2}$. In the case of analytic boundary this was improved in [BLR] to a cubic curve $\operatorname{Im} \lambda=C_{1}|\lambda|^{1 / 3}-C_{2}$ with some constants $C_{1}, C_{2}>0$ which can be calculated explicitly. Recently, it was shown in [SZ] and [HL] that this is the

[^0]
[^0]: Received 18 March 1994. Revision received 4 November 1994.
 Both authors partly supported by the Bulgarian Science Foundation, grant MM 401/94.

