SUPERSINGULAR REDUCTION OF DRINFEL'D MODULES

CHANTAL DAVID

Introduction. Let $R = \mathbb{F}_{q}[T]$ and $F = \mathbb{F}_{q}(T)$ be, respectively, the ring of polynomials and the field of rational functions in one indeterminate over the finite field \mathbb{F}_{q} , q a power of an odd prime.

Let ϕ be a rank-2 Drinfel'd R-module defined over $\mathbb{F}_a(T)$. For $p \in \mathbb{F}_a[T]$, a prime of good reduction for ϕ , let ϕ_p denote the reduction of ϕ at p; ϕ_p is then a rank-2 Drinfel'd R-module over the finite field

$$\mathbb{F}_{(p)} = \mathbb{F}_q[T]/(p) \simeq \mathbb{F}_{q^{\deg p}}.$$

Depending on the structure of the endomorphism ring $End(\phi_p)$, the Drinfel'd module ϕ_p is said to be ordinary or supersingular (see Section 2). Let

 $P(x) = \{ \text{monic prime polynomials } p \in \mathbb{F}_{q}[T] : |p| = q^{\deg p} \leq x \}.$

In this paper, we investigate the asymptotic behavior of

$$\pi_{\phi}(x) = \# \{ p \in P(x) : \phi \text{ has good supersingular reduction at } p \}.$$

A quadratic extension K/F is said to be imaginary if the prime at infinity does not split in K/F. We say that a Drinfel'd module ϕ has complex multiplication by an order \mathcal{O} of a quadratic imaginary extension K/F if $\mathcal{O} \simeq \operatorname{End}(\phi)$. In this case, by Deuring's criterion (Theorem 2.2) and the Čebotarev density theorem (Theorem 5.1), we get that

(i) when $K \neq F(\sqrt{u})$, u a nonsquare in \mathbb{F}_{a}^{*} ,

$$\pi_{\phi}(x) \sim \frac{1}{2} \frac{\overline{x}}{\log_{q} \overline{x}},$$

where \overline{x} is the largest power of q smaller than or equal to x; (ii) when $K = F(\sqrt{u})$, u a nonsquare in \mathbb{F}_{q}^{*} ,

$$\pi_{\phi}(x) \sim \frac{\overline{x}}{\log_{a} \overline{x}}$$

where \overline{x} is the largest *odd* power of *q* smaller than or equal to *x*.

Received 7 February 1994. Author partially supported by CICMA.