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KOENIGS FUNCTIONS, QUASICIRCLES AND BMO

JUHA HEINONEN AND STEFFEN ROHDE

1. Introduction. Let R: I I be a rational function having an attracting fix-
point Zo C and consider its immediate basin of attraction G, that is, the compo-
nent of the Fatou set containing Zo. We assume that the multiplier 2 R’(zo)
satisfies 0 < 121 < 1. The Koenigs function fR of R is the analytic function which
conjugates R to its linear approximation,

(1.1) f o R(z)= 2fR(z),

normalized by f[(Zo) 1. Note that fR(ZO) 0. Since R is rational, fR is analytic
in all of G, and not only in a neighborhood of Zo. We refer to I-B, Chapter 6.3],
I-CG, Chapter II], or I-S, Chapter 3.4] for the details of this discussion.
There is another natural conjugacy. If G is simply connected and if b: D G is

a conformal map from the unit disk D onto G, then

(1.2) B=BR=- oRo
is an analytic proper self-map of the unit disk, and thus a Blaschke product. If G
is multiply connected, R lifts to an inner function B of the unit disk via a covering
map b: D --* G, b(0) Zo. Therefore, in any case, the analytic function fa fR o q
is the Koenigs function of B, conjugating B to a linear map near the origin.

Since f(zo)= 1, there is some, and hence the largest, disk DR centered at 0
such that f-i can be defined and is analytic in DR. Thus

CR fI(DR) G

is the largest subdomain of G that contains Zo and is mapped univalently by fR
onto some disk centered at the origin. Similarly, Ca fX(DR)= b-x(CR) is the
largest disk that contains 0 and is mapped univalently by fa onto some disk
centered at the origin.

Recall that a K-qua..sidisk is the image of a disk under a K-quasiconformal
self-map of the sphere C. A boundary of a K-quasidisk is termed a K-quasicircle.
In this paper we shall establish a new criterion for a domain to be a quasidisk
(Theorem 1.4), and our main application is the following description of Ca.
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