PERTURBATIONS OF THE ROTATION C^{*}-ALGEBRAS AND OF THE HEISENBERG COMMUTATION RELATION

UFFE HAAGERUP and MIKAEL RØRDAM

1. Introduction. It is proved that almost commuting operators on a Hilbert space in specific cases of interest are close to commuting operators if the given operators are amplified infinitely.

Let P and Q be (unbounded) selfadjoint operators on a Hilbert space H satisfying the Heisenberg commutation relation $P Q-Q P=-i I$, and let K be an infinite-dimensional Hilbert space. We show (Theorem 3.1) that there are commuting selfadjoint operators P_{0} and Q_{0} on $H \otimes K$ such that $P \otimes I-P_{0}$ and $Q \otimes I-Q_{0}$ are bounded.

Let S and Ω be the Voiculescu matrices in $U(n)$ which satisfy $S \Omega=\omega \Omega S$ where $\omega=\exp (2 \pi i / n)$ (see Corollary 4.12). Let H be an infinite-dimensional Hilbert space. It is proved that there are commuting unitaries S_{0} and Ω_{0} on $\mathbb{C}^{n} \otimes H$ so that $\left\|S \otimes I-S_{0}\right\|$ and $\left\|\Omega \otimes I-\Omega_{0}\right\|$ are less than $25 n^{-1 / 2}$.

The rotation C^{*}-algebra $A_{\theta}, \theta \in \mathbb{R}$, associated with the rotation of the circle by angle $2 \pi \theta$, is the universal C^{*}-algebra generated by two unitaries u and v satisfying the commutation relation

$$
u v=e^{2 \pi i \theta} v u
$$

G. Elliott has in [8] proved that the family of rotation C^{*}-algebras forms a continuous field in the sense that there is a C^{*}-algebra \mathscr{A} and surjective *-homomorphisms $\pi_{\theta}: \mathscr{A} \rightarrow A_{\theta}$ such that the maps $\theta \mapsto\left\|\pi_{\theta}(a)\right\|$ are continuous for all $a \in \mathscr{A}$. We prove that the rotation C^{*}-algebras form a continuous field in the following stronger sense.

Let H be an infinite-dimensional separable Hilbert space. Then there exist two continuous paths $u, v:[0,1] \rightarrow U(H)$ into the unitary group $U(H)$ of H such that $u(0)=u(1), v(0)=v(1)$, and $u(\theta) v(\theta)=\exp (2 \pi i \theta) v(\theta) u(\theta)$ for each $\theta \in[0,1]$. Moreover, u, v can be chosen such that

$$
\max \left\{\left\|u\left(\theta_{2}\right)-u\left(\theta_{1}\right)\right\|,\left\|v\left(\theta_{2}\right)-v\left(\theta_{1}\right)\right\|\right\} \leq C\left|\theta_{1}-\theta_{2}\right|^{1 / 2}
$$

for all $\theta_{1}, \theta_{2} \in[0,1]$ and where C is a universal constant (see Theorem 5.4). This estimate is (up to a factor) best possible in the sense that we also have

$$
\max \left\{\left\|u_{2}-u_{1}\right\|,\left\|v_{2}-v_{1}\right\|\right\} \geqslant\left|\theta_{1}-\theta_{2}\right|^{1 / 2}
$$

