EQUIVALENCE OF REAL SUBMANIFOLDS UNDER VOLUME-PRESERVING HOLOMORPHIC AUTOMORPHISMS OF Cⁿ

FRANC FORSTNERIC

1. Introduction. The main theme of this paper is the global equivalence of certain types of real submanifolds in the complex euclidean space \mathbb{C}^n (n > 1) under the group of all volume-preserving holomorphic automorphisms of \mathbb{C}^n . Let Ω be the complex volume form on \mathbb{C}^n :

$$\Omega = dz_1 \wedge dz_2 \wedge \cdots \wedge dz_n. \tag{1}$$

A holomorphic mapping $F: D \subset \mathbb{C}^n \to \mathbb{C}^n$ is said to be volume-preserving if $F^*\Omega = \Omega$. Since $(F^*\Omega)(z) = JF(z) \cdot \Omega$, where JF is the complex Jacobian of F, this is equivalent to JF(z) = 1, $z \in D$. We denote by Aut \mathbb{C}^n the group of all holomorphic automorphisms of \mathbb{C}^n and by Aut₁ $\mathbb{C}^n \subset$ Aut \mathbb{C}^n the group of all volume-preserving automorphisms of \mathbb{C}^n .

Definition 1. Let \mathscr{G} be any group of holomorphic automorphisms of \mathbb{C}^n .

(a) Two compact subsets M_0 , $M_1 \subset \mathbb{C}^n$ are \mathscr{G} -equivalent if there exist a neighborhood U of M_0 in \mathbb{C}^n and a biholomorphic mapping $F: U \to F(U) \subset \mathbb{C}^n$ such that $F(M_0) = M_1$, and F is the uniform limit in U of a sequence $F_i \in \mathscr{G}$.

(b) Let M be a compact topological space. Continuous maps $f_0, f_1: M \to \mathbb{C}^n$ are \mathscr{G} -equivalent if there exist a neighborhood U of $f_0(M)$ in \mathbb{C}^n and a biholomorphic mapping $F: U \to F(U) \subset \mathbb{C}^n$ such that $F \circ f_0 = f_1$, and F is the uniform limit in U of a sequence $F_i \in \mathscr{G}$.

Several observations and remarks are in order. For $\mathscr{G} = \operatorname{Aut} \mathbb{C}^n$, our Definition 1 agrees with the definition of \mathbb{C}^n -equivalence as introduced in [8] (Definition 2). The same definition was used in [7] for the group $\operatorname{Aut}_{sp} \mathbb{C}^{2n}$ of symplectic holomorphic automorphisms of \mathbb{C}^{2n} . If $\mathscr{G} = \operatorname{Aut}_1 \mathbb{C}^n$, it follows that the limit map $F: U \to \mathbb{C}^n$ satisfying Definition 1 is itself volume-preserving. Further, the maximum principle shows that a sequence of holomorphic maps which converges on a neighborhood of a set $K \subset \mathbb{C}^n$ also converges on a neighborhood of the polynomially convex hull \hat{K} . Therefore \mathscr{G} -equivalence of sets $K_0, K_1 \subset \mathbb{C}^n$ implies \mathscr{G} -equivalence of their polynomial hulls. Finally, if $\mathscr{G}' \subset \mathscr{G}$ are holomorphic automorphism groups on \mathbb{C}^n such that \mathscr{G}' is dense in \mathscr{G} (in the topology of uniform

Received 15 April 1994. Revision received 5 September 1994.

Author supported in part by NSF grant DMS-9322766 and by a grant from the Ministry of Science of the Republic of Slovenia.