ON THE DIRICHLET PROBLEM FOR HARMONIC MAPS WITH PRESCRIBED SINGULARITIES

GILBERT WEINSTEIN

1. Introduction. The Einstein vacuum equations in the stationary axially symmetric case reduce to a harmonic map from \mathbb{R}^{3} into $\mathbb{H}_{\mathbb{R}}^{2}$, the hyperbolic plane, with prescribed singularities along the axis of symmetry. In [18] and [19] we used this fact to construct solutions of these equations which could be interpreted as a pair of rotating black holes held apart by a singular strut. These solutions generalized the static Weyl solutions; see [1]. The first step in this program was to solve a Dirichlet problem for such maps with the singularity prescribed along a closed submanifold of the domain. A natural generalization of this problem is to replace the Einstein vacuum equations with the Einstein-Maxwell equations. A similar reduction again leads to a harmonic map problem with prescribed singularities, but the target is now $\mathbb{H}_{\mathbb{C}}^{2}$, the complex hyperbolic plane; see [11].

In this paper, we study the Dirichlet problem for harmonic maps with prescribed singularities from a smooth bounded domain $\Omega \subset \mathbb{R}^{n}, n \geqslant 2$, into (M, g), a classical Riemannian globally symmetric space of rank one and of noncompact type. Thus (M, g) is either the real-, complex-, or quaternion-hyperbolic space, i.e., $(M, g)=\mathbb{H}_{\mathbb{K}}^{\ell}$, where $\ell \geqslant 2$, and \mathbb{K} is either \mathbb{R}, \mathbb{C}, or the quaternions \mathbb{H}; see [6]. For simplicity, we take the Euclidean metric on \mathbb{R}^{n}, although all the results carry over easily to bounded domains in Riemannian manifolds. Recall that a map $\varphi: \Omega \rightarrow(M, g)$ is harmonic if for each $\Omega^{\prime} \subset \subset \Omega$ the map $\varphi \mid \Omega^{\prime}$ is a critical point of the energy:

$$
\begin{equation*}
E_{\Omega^{\prime}}(\varphi)=\int_{\Omega^{\prime}}|d \varphi|^{2}, \tag{1}
\end{equation*}
$$

where $|d \varphi|^{2}=\sum_{k=1}^{n} g\left(\nabla_{k} \varphi, \nabla_{k} \varphi\right)$. It then satisfies an elliptic system of nonlinear partial differential equations, written in local coordinates on M as:

$$
\Delta \varphi^{a}+\sum_{k=1}^{n} \Gamma_{b c}^{a} \partial_{k} \varphi^{b} \partial_{k} \varphi^{c}=0
$$

where $\Gamma_{b c}^{a}$ are the Christoffel symbols of (M, g). Harmonic maps have been studied extensively. The Dirichlet problem for harmonic maps into a manifold of non-

[^0]
[^0]: Received 25 February 1994.
 Research supported in part by NSF grant DMS-9404523 and by a grant from NSF EPSCoR in Alabama.

