ELLIPTIC DUNKL OPERATORS, ROOT SYSTEMS, AND FUNCTIONAL EQUATIONS

V. M. BUCHSTABER, G. FELDER, AND A. P. VESELOV

Introduction. In the paper [1], Dunkl introduced the following differencedifferential operators acting on functions on a Euclidean space V, related to arbitrary finite groups G generated by orthogonal reflections in V:

$$\nabla_{\xi} = \partial_{\xi} + \sum_{\alpha \in \mathbb{R}_{+}} k_{\alpha}(\alpha, \xi) \frac{1}{(\alpha, x)} \hat{s}_{\alpha}.$$
(1)

Here ∂_{ξ} denotes the partial derivative in the direction $\xi \in V$, R is the root system of the group G, i.e., the set of unit normals to the reflection hyperplanes, R_+ is its positive part with respect to some generic linear form on V, $k_{\alpha} = k(\alpha)$ is a Ginvariant function on R, s_{α} is the reflection corresponding to the root $\alpha \in R$, and \hat{s}_{α} is the operator on the space of functions on V:

$$\hat{s}_{\alpha}f(x) = f(s_{\alpha}(x)).$$

To be precise, Dunkl used slightly different operators, which are conjugated to (1) by the operator of multiplication by $\prod (\alpha, x)^{k_{\alpha}}$.

The main property of the Dunkl operators is given by the following.

THEOREM 1 (Dunkl). The operators (1) commute with each other:

$$[\nabla_{\xi}, \nabla_{\eta}] = 0, \tag{2}$$

for all $\xi, \eta \in V$.

The goal of this work is to describe certain generalizations of the Dunkl operators (1), preserving the property (2). Some of these results were announced in [2].

In Section 1 we consider generalizations of the form

$$\nabla_{\xi} = \partial_{\xi} + \sum_{\alpha \in A_{+}} k_{\alpha}(\alpha, \xi) \frac{1}{(\alpha, x)} \hat{s}_{\alpha}, \qquad (3)$$

where A_+ is the set of unit normals to some set S of hyperplanes in V passing through the origin, A_+ is its positive part, and $k_{\alpha} = k(\alpha)$ is some function on A_+ . We show that the commutativity of the operators ∇_{ξ} implies that S is the set of reflection hyperplanes of some Coxeter group G, $A_+ = R_+$, and k is G-invariant.

Received 1 April 1994. Revision received 27 May 1994.