COEFFICIENT ESTIMATES ON WEIGHTED BERGMAN SPACES

JOHN E. MCCARTHY

Section 0. Introduction. Let A denote normalized area measure for the unit disk \mathbb{D} in \mathbb{C} . The Bergman space L_a^2 is the subspace of the Hilbert space $L^2(A)$ consisting of functions that are also analytic in \mathbb{D} . The monomials z^n are orthogonal in L_a^2 , and have norm $1/\sqrt{n+1}$; so a holomorphic function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is in L_a^2 if and only if $\sum_{n=0}^{\infty} |a_n|^2(1/(n+1)) < \infty$, and if this is so, the partial sums $\sum_{n=0}^{N} a_n z^n$ are polynomials converging to f. The weighted Bergman spaces normally studied are obtained by replacing the measure dA(z) by the radial measure $dA_{\alpha}(z) = (1 - |z|^2)^{\alpha} dA(z)$; in these spaces the monomials are again orthogonal, and a function is approximable in norm by the partial sums of its power series at zero. In this paper we are interested in studying nonradial weights of the form $|m(z)|^2 dA_{\alpha}(z)$, where m is the modulus of a function in H^{∞} , the space of bounded analytic functions on \mathbb{D} .

There are two different ways of generalizing the Bergman space to these weights. We shall use $L_a^2(|m|^2A_{\alpha})$ to denote the space of analytic functions on \mathbb{D} that also lie in $L^2(|m|^2A_{\alpha})$, and $P^2(|m|^2A_{\alpha})$ to denote the closure of the polynomials in $L^2(|m|^2A_{\alpha})$. These two spaces are, in general, different. If *m* has no zeroes, $L^2(|m|^2A_{\alpha})$ is just the set of quotients $\{f/m: f \in L_a^2\}$; but this coincides with $P^2(|m|^2A_{\alpha})$ only when 1/m is in $P^2(|m|^2A_{\alpha})$, which in turn is equivalent to requiring that 1 lie in the L_a^2 closure of $\{mp: p \ a \ polynomial\}$, i.e., that *m* be a cyclic vector for multiplication by *z* (this is discussed in Section 3 below). When *m* has an infinite number of zeroes, we do not know when $P^2(|m|^2A_{\alpha})$ is all of $L_a^2(|m|^2A_{\alpha})$.

We are interested in obtaining, for functions in $P^2(|m|^2A_{\alpha})$ and $L^2_{\alpha}(|m|^2A_{\alpha})$, estimates on the size of the Taylor coefficients, and on the rate of growth as the boundary is approached. Our principal results are the following.

THEOREMS 2.1, 2.6, 1.4. Let m be in H^{∞} . Let f be in $L^2_a(|m|^2A_a)$. Then

$$|\hat{f}(n)| = e^{O(\sqrt{n} \log n)}.$$

If f is in $L^2_a(|m|^2A)$, then

$$|\hat{f}(n)| = e^{O(\sqrt{n})}.$$

Received 7 August 1992. Revision received 24 May 1994. Partially supported by the National Science Foundation grant DMS 9296099.